Thermoelasticity of SSP Materials: An Integrated Ultrasonic and X-radiation Study

PDF Version Also Available for Download.

Description

It has been a very productive year for accomplishing the tasks outlined in the original proposal. Quite a few crystalline materials [tantalum (Ta), molybdenum (Mo), cerium (Ce) beryllium (Be)] and amorphous materials [zirconium tungstate (ZrW2O8), SiO2, and germanium diselenide (GeSe2) glasses] have been assessed at high pressures up to 12 GPa and acoustic velocities and densities have been obtained simultaneously using our unique technique. Major activities include sample preparation, high pressure cell assembly testing, and conducting ultrasonic and X-ray diffraction measurements at BNL as well as resonance ultrasonic spectroscopy (RUS) measurements at UCLA on appropriate samples. Sample preparations for Ce ... continued below

Physical Description

470KB

Creation Information

Li, Baosheng July 29, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

It has been a very productive year for accomplishing the tasks outlined in the original proposal. Quite a few crystalline materials [tantalum (Ta), molybdenum (Mo), cerium (Ce) beryllium (Be)] and amorphous materials [zirconium tungstate (ZrW2O8), SiO2, and germanium diselenide (GeSe2) glasses] have been assessed at high pressures up to 12 GPa and acoustic velocities and densities have been obtained simultaneously using our unique technique. Major activities include sample preparation, high pressure cell assembly testing, and conducting ultrasonic and X-ray diffraction measurements at BNL as well as resonance ultrasonic spectroscopy (RUS) measurements at UCLA on appropriate samples. Sample preparations for Ce and Be were made at Los Alamos National Lab for which special grades and specialized machining of the sample are required. Pilot experiments for optimizing high pressure cell assemblies were conducted using the 1000-ton multi-anvil press (USCA-1000) in the High Pressure Lab at Stony Brook, and simultaneous ultrasonic and X-ray diffraction experiments were conducted using the DDIA apparatus installed at X17B2 of NSLS at BNL. New data analysis protocols have been developed for deriving density of amorphous materials at high pressure and therefore its equation of state. Following on previous years effort, attempts have been made to derive single crystal elastic constants based on the current measurements on polycrystalline samples at high pressure in conjunction with previous data as well as the current RUS measurements at ambient conditions. Single crystal elastic constants of Tantalum have been measured using RUS techniques at room pressure and high temperature. Educational and training opportunities have been provided for postdoctoral associate researchers, Drs. Wei Liu (project leader for Mo, and ZrW2O8 and SiO2 glass) and Qiong Liu (Ta project leader) and graduate students Mr. Matthew Whitaker (Project Ce and FeSi) and Sytle Antao (GeSe2 glass project). A total of 6 undergraduate students (2 summer students at Stony Brook University, and 4 undergraduates from Azusa Pacific University) participated in the experiments at various stages and benefited from the discussions about the science and research work conducted by our collaborators of the current project at DoE national labs.

Physical Description

470KB

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE-NA26211-2
  • Grant Number: FG52-06NA26211
  • DOI: 10.2172/935213 | External Link
  • Office of Scientific & Technical Information Report Number: 935213
  • Archival Resource Key: ark:/67531/metadc900056

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 29, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 8:03 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Li, Baosheng. Thermoelasticity of SSP Materials: An Integrated Ultrasonic and X-radiation Study, report, July 29, 2008; United States. (digital.library.unt.edu/ark:/67531/metadc900056/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.