Safeguard Application Options for the Laser-Based Item Monitoring System (LBIMS)

PDF Version Also Available for Download.

Description

Researchers at Oak Ridge National Laboratory (ORNL) are developing a Laser-Based Item Monitoring System (LBIMS) for advanced safeguards at nuclear facilities. LBIMS uses a low-power laser transceiver to monitor the presence and position of items with retroreflective tags. The primary advantages of LBIMS are its scalability to continuously monitor a wide range of items, its ability to operate unattended, its low cost of implementation, and its inherent information security due to its line-of-sight and non-broadcasting operation. The primary proposed safeguard application of LBIMS is described in its name: item monitoring. LBIMS could be implemented in a storage area to continuously ... continued below

Creation Information

Laughter, Mark D October 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Researchers at Oak Ridge National Laboratory (ORNL) are developing a Laser-Based Item Monitoring System (LBIMS) for advanced safeguards at nuclear facilities. LBIMS uses a low-power laser transceiver to monitor the presence and position of items with retroreflective tags. The primary advantages of LBIMS are its scalability to continuously monitor a wide range of items, its ability to operate unattended, its low cost of implementation, and its inherent information security due to its line-of-sight and non-broadcasting operation. The primary proposed safeguard application of LBIMS is described in its name: item monitoring. LBIMS could be implemented in a storage area to continuously monitor containers of nuclear material and the area in which they are stored. The system could be configured to provide off-site notification if any of the containers are moved or removed or if the area is accessed. Individual tags would be used to monitor storage containers, and additional tags could be used to record information regarding secondary storage units and room access. The capability to register small changes in tag position opens up the possibility of several other uses. These include continuously monitoring piping arrangements for design information verification or recording equipment positions for other safeguards systems, such as tracking the opening and closing of autoclaves as part of a cylinder tracking system or opening and closing valves on a sample or product take-off line. Combined with attribute tags, which transmit information from any kind of sensor by modulating the laser signal, LBIMS provides the capability to wirelessly and securely collect safeguards data, even in areas where radio-frequency or other wireless communication methods are not practicable. Four application types are described in this report: static item monitoring, in-process item monitoring with trigger tags, multi-layered integration with trigger tags, and line-of-sight data transfer with attribute tags. Field trials for each of these applications are described.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2008/086
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/939648 | External Link
  • Office of Scientific & Technical Information Report Number: 939648
  • Archival Resource Key: ark:/67531/metadc900055

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 7:40 p.m.

Usage Statistics

When was this report last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Laughter, Mark D. Safeguard Application Options for the Laser-Based Item Monitoring System (LBIMS), report, October 1, 2008; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc900055/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.