THE PHOTOCHEMISTRY OF PYRIDINE N-OXIDE

Algis Alkaitis and Melvin Calvin

September 14, 1957

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545
THE PHOTOCHEMISTRY OF PYRIDINE N-OXIDE

Algis Alkaitis and Melvin Calvin

September 14, 1967
THE PHOTOCHEMISTRY OF PYRIDINE N-OXIDE

Sir:

We wish to report our results on the photolysis of pyridine N-oxide in alcoholic solution. Both methanol and ethanol solutions of pyridine N-oxide were irradiated. The reaction mixture was analyzed by gas-liquid chromatography (GLC) using a 2.5% FFAP on Chrom G column and a Porapak Q column. In order to collect the products, the volume of the photolysis solution was reduced in vacuo and the resulting mixture was separated by preparative GLC.

The following is the result of a typical run (photolysis of 1 g/100 ml RCH₂OH, 10 mmole).

![Reaction diagram]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Pyrex filter</th>
<th>All quartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.26 mmole</td>
<td>0.42 mmole</td>
</tr>
<tr>
<td>II</td>
<td>0.68 mmole</td>
<td>0.69 mmole</td>
</tr>
<tr>
<td>III</td>
<td>0.27 mmole</td>
<td>0.36 mmole</td>
</tr>
<tr>
<td>IV</td>
<td>0.13 mmole</td>
<td>0.50 mmole</td>
</tr>
<tr>
<td>V</td>
<td>trace</td>
<td>trace</td>
</tr>
</tbody>
</table>

With the pyrex filter, 50% of the starting material was recovered after 6 hrs of photolysis. Using the all-quartz system, 10% of the starting material was recovered after 10 min of photolysis.

¹A quartz Hanovia immersion apparatus was used with a Hanovia high pressure 450 watt mercury lamp. Immediately after photolysis, the solution turned very dark reddish brown upon standing, and a brown polymer precipitated.
The structure of I, II, IV, V was proved by comparison of the GLC retention times, the IR spectra, the UV spectra, the NMR spectra, and the mass spectra to those of authentic samples (I and II were available commercially; IV and V were synthesized).

The structure of III is believed to be as shown from the following evidence: the IR spectrum shows no N-H stretch at 3400 cm\(^{-1}\) and no carbonyl stretch. There is a strong absorption pattern at 1000 to 1550 cm\(^{-1}\) indicative of an acetal function. The NMR spectrum of III (R=II) shows a sharp singlet at 3.26 (6II) and broad singlets at 5.76 (1II), 6.056 (2II), 6.756 (2II). The NMR spectrum of III (R=CH\(_3\)) shows a triplet at 1.26 (6II), a quartet at 3.56 (4II), and broad singlets at 5.96 (1II), 6.086 (2II), 6.86 (2II).

The UV spectrum in EtOH of both R=II and R=CH\(_3\) shows a \(\lambda_{\text{max}}\) at 220 \(\mu\)m, \(\varepsilon\) 5,600. Upon addition of one drop of 0.1 \(\text{N} \) HCl the \(\lambda_{\text{max}}\) shifted to 235 \(\mu\)m with an increase in \(\varepsilon\). Upon addition of 3 drops of 0.1 \(\text{N} \) NaOH the \(\lambda_{\text{max}}\) shifted to 210 \(\mu\)m. Upon reacidification, there is no further shift in the \(\lambda_{\text{max}}\). N-Formyl pyrrole (synthesized as a standard for proof of V) shows a \(\lambda_{\text{max}}\) in EtOH at 235 \(\mu\)m, \(\varepsilon\) 11,200, in the UV. Upon addition of two drops of 0.1 \(\text{N} \) NaOH, there is a shift of the \(\lambda_{\text{max}}\) to 210 \(\mu\)m. A parallel experiment was performed on a more concentrated solution of III and the reaction with acid and base was followed by GLC. The following reactions are consistent with the results.\(^2\)

\[
\begin{array}{c}
\text{R-CH\(_2\)O-\text{C}-\text{OCH\(_2\)R}}
\end{array}
\xrightarrow{\text{H}^+}
\begin{array}{c}
\text{H-C=O}
\end{array}
\xrightarrow{-\text{CH}}
\begin{array}{c}
\text{H}
\end{array}
\]

\(^2\) It was found that III slowly hydrolyzed to N-formyl pyrrole upon standing in an ethanol solution.
A high resolution mass spectrum was taken of III (R=H). The base peak was m/e 75, C$_3$H$_7$O$_2$. The other major peaks were: parent peak (18% of base peak) at 141, C$_{7}$H$_{11}$NO$_2$; m-30, C$_{5}$H$_{8}$N (32% base); m-46, C$_{5}$H$_{5}$NO (30% base); m-74, C$_{4}$H$_{5}$N (40% base).

The photolysis of substituted quinoline N-oxides has been reported by Kaneko3 in Japan, and Buchardt4 in Sweden. Streith and Sigwall5 have reported the photolysis of pyridine N-oxide (the only product reported was pyrrole aldehyde, IV).

It is generally postulated that the first step in the photochemical reaction of the aromatic N-oxide is the formation of the non-isolatable, unstable oxaziridine, with subsequent rearrangement.3-6

\[\text{photolysis} \rightarrow \text{oxaziridine} \rightarrow \text{pyrrole aldehyde} \]

Although the pyridone derivatives were reported as products of photolysis of quinoline N-oxides, no pyridone could be detected in the pyridine N-oxide photolysis.
This postulate arises from the observation of Calvin and Splitter\(^7\) that isolatable alkyl and phenyl substituted oxaziridines, formed photochemically from the nitrones, rearrange thermally to amides:

\[
\begin{align*}
\text{R}_1 & \text{R}_2 \text{C} = \text{N} \quad \text{hv} \quad \frac{\text{R}_1 \text{R}_2 \text{R}_3 \text{C} = \text{N}}{\text{R}_2 \text{R}_3} \\
\end{align*}
\]

The finding of the previously unreported oxidation product of the solvent' (acetaldehyde from ethanol) is direct evidence for the more powerful oxidant, an oxaziridine (VI), as an intermediate. It is known\(^8\) that an oxaziridine will oxidize iodide to iodine. Since in the oxidation of iodide by an oxaziridine, the parent imine is formed as a product,\(^8\) the presence of the deoxygenated heteroatomic compound may also be explained by the following reaction:

\[
\begin{align*}
\text{N} & \quad \text{hv} \quad \text{EtOH} \quad \text{EtOH} \quad \frac{\text{N}}{\text{Cl}_2\text{CHO} + \text{H}_2\text{O}} \\
\end{align*}
\]

If the solvent is susceptible to oxidation by some photochemical intermediate, it may be possible to oxidize a carbon-carbon double bond and obtain an oxygen transfer (perhaps to an epoxide) instead of a hydrogen abstraction as in the case of ethanol.

The trace of N-formyl pyrrole (V) found in the photolysis mixture may arise from hydrolysis of III.

A corresponding compound\(^9\) has been described as formed from 2-phenylquinoline N-oxide,\(^{3c}\) through the stable intermediate\(^{3d,4c}\) 2-phenyl-4,5-benz-1,3-oxazepine which, in turn, is suggested as a rearrangement product of the initially formed oxaziridine.\(^{3c}\) Buchardt\(^{4c}\) reports that oxazepines will not oxidize iodide, but rather will reduce iodine to iodide. While our evidence for the primary formation of the good oxidant, oxaziridine (VI), from pyridine N-oxide is good, we have no independent indication, as yet, of the participation of an oxazepine in the formation of III.

This work was supported, in part, by the U.S. Atomic Energy Commission.

\(^9\)Only an NMR spectrum was used to assign the structure.

Algis Albritis and Melvin Calvin
Laboratory of Chemical Biodynamics and Department of Chemistry
University of California
Berkeley, California
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.