PREDICTION OF SURFACE SETTLEMENT DUE TO THE DISPLACEMENT OF SOFT ZONES

PDF Version Also Available for Download.

Description

In areas composed of coastal plain sediments, soft zones subjected to partial overburden may be present in the subsurface. During or after a seismic event, these soft zones may be compressed. The resulting displacement due to the deformation of the soft zones will propagate to the ground surface and cause the surface to settle. This paper presents a method to predict the settlement at the surface due to the propagation of the displacement from the soft zones. This method is performed by discretizing the soft zones into multiple clusters of finite sub-areas or subspaces. Settlement profile at the ground surface ... continued below

Creation Information

Li, W March 3, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In areas composed of coastal plain sediments, soft zones subjected to partial overburden may be present in the subsurface. During or after a seismic event, these soft zones may be compressed. The resulting displacement due to the deformation of the soft zones will propagate to the ground surface and cause the surface to settle. This paper presents a method to predict the settlement at the surface due to the propagation of the displacement from the soft zones. This method is performed by discretizing the soft zones into multiple clusters of finite sub-areas or subspaces. Settlement profile at the ground surface due to the displacement of each sub-area or subspace is computed assuming the shape is a normal distribution function. Settlement due to the displacement of the soft zones can then be approximated by adding the settlements computed for all the sub-areas or subspaces. This method provides a simple and useful tool for the prediction of the settlement profile and the results are consistent with those obtained from the finite difference analysis.

Notes

available

Source

  • The Fourth International conference on Deformation Characterixtics of Geomaterials in Atlanta

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-TR-2007-00458
  • Grant Number: DE-AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 924978
  • Archival Resource Key: ark:/67531/metadc899997

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 3, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 2, 2016, 5:23 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Li, W. PREDICTION OF SURFACE SETTLEMENT DUE TO THE DISPLACEMENT OF SOFT ZONES, article, March 3, 2008; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc899997/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.