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Abstract 

The dynamics of water molecules near the protein surface are different from 

those of bulk water and influence the structure and dynamics of the protein itself. To 

elucidate the temperature dependence hydration dynamics of water molecules, we 

present results from the molecular dynamic simulation of the water molecules 

surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different 

temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients 

of the surface water and bulk water molecules were estimated from 2 ns molecular 

dynamics simulation trajectories. Temperature dependence of the estimated bulk water 

diffusion closely reflects the experimental values, while hydration water diffusion is 

retarded significantly due to the protein. Protein surface induced scaling of translational 

dynamics of the hydration waters is uniform over the temperature range studied, 

suggesting the importance protein-water interactions. 
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Introduction 

Water plays a crucial role in determining the structure, dynamics, and function of 

proteins and other biological macromolecules. It is implicated in the folding, unfolding, 

and stabilization of protein three-dimensional structure, as well as in the internal 

dynamics and function (1-9). Protein-water interaction affects the water molecules near 

the protein, leading to a behavior that is very different from bulk water (10-12). These 

water molecules, widely known as interfacial or surface water molecules can be 

considered in general terms as hydration water, and a better understanding of their 

properties is necessary to gain insight into various biological mechanisms of protein 

function (13-15). The dynamics and other properties of water near protein surface has 

been elucidated by a multitude of experimental methods; these include calorimetry, 

thermodynamic measurements (16), nuclear magnetic resonance (NMR) analysis (17-

19), X-ray and neutron small-angle scattering (20), high resolution X-ray crystallography 

(21-25), and high resolution neutron crystallography (26,27). All these studies showed 

that water molecules on the protein surface mainly occupy well-defined hydration sites 

(time and space averaged water molecule position), providing stability to the protein 

structure and mediating interactions with other components of the cell.  

There is increasing evidence over the past decade and in particular in the last 

four years that hydration water molecules play a synergetic role in protein structure, 

dynamics, as well as function (6-8). Although experimental measurements indirectly 

show that, the physical properties of hydration water molecules are different from that of 

bulk water, molecular dynamics (MD) simulations are capable of providing information 

on the time and the geometric scale commensurate with the diffusive motions of indi-

vidual water molecules responsible. Several MD studies have been performed on protein 

solution or protein crystals and provide a wide range of observations and at times 
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contradictory (28-30). Lack of consistent experimental and computational investigations 

on model protein-water systems make it difficult to compare the structural and dynamical 

results across the different studies. In addition, most of the calculations have been 

restricted to either short simulation length or to a single temperature. As a first step 

towards generating a consistent set of data, we present a molecular dynamic study of 

water molecules in two protein systems, as a function of temperature.  

Molecular dynamics simulation of protein-water systems of two different model 

proteins, Carboxypeptidase inhibitor (CPI) and Ovomucoid (OVO), in explicit water as a 

function of temperature from 273 K to 303 K is presented. The choice of the proteins 

was decided by their size that allows sampling of the water dynamics that are 

computationally inexpensive and at the same time provide the necessary features to 

generalize the results. CPI is a small protein of 39 residues (MW=4.36 kD) with the 

three-dimensional structure well stabilized by intramolecular disulphide bonds (31). OVO 

is a medium sized protein of 56 residues long (MW=6.04 kD). Analysis of the molecular 

dynamics simulation trajectories of the water molecules provides characteristic 

differences in the dynamic behavior between the bulk and surface water molecules. In 

particular, we find that our results are similar to the trend suggested by the modified 

Stokes-Einstein equation for biomolecular hydration (32). These results perhaps provide 

a first set of consistent simulation data to understand the temperature dependence of the 

translational dynamics of water molecules. 

 



Page 5 of 32 

Results 
Temperature dependence of radial distribution functions 

The structural organization of water at the protein interface is generally described 

by protein-water radial distribution functions that represent the relative probability of 

finding any solvent molecule at a distance ‘r’ from a specific solute atom (33,34). The 

radial distribution function (RDF) of the water molecules around the proteins has been 

calculated for both polar and nonpolar residues separately. Figure 1 shows the shows 

plots of the radial distribution function of the backbone carbons (α and carbonyl), and 

nitrogen to the water oxygen at three representative temperatures (at 273, 288 and 303 

K) for the protein CPI with the left panels (a, c and e) for the nonpolar residues and the 

right panels (b, d and f) for the polar residues.  Similarly, Figure 2 shows the results for 

the protein Ovomucoid. The plot of the radial distribution function is used to evaluate the 

quality of the dynamic trajectories. All the distribution functions in figures 1 and 2 show 

the characteristic peaks, with the first one centered around 2-3 Å, arising from the strong 

interaction of the water oxygen with hydrogen bond acceptor groups of the protein 

surface, and the second peak at a location farther from the first one (4-5 Å) due to 

interaction between the water oxygen and nonpolar heavy atoms of the proteins (33,35). 

Figures 1 and 2 also show the bulk limit of the radial distribution is generally reached for 

distances greater than 8 Å from the protein surface, supporting the lack of persistence of 

the structural organization of bulk water. For both proteins, the first peak for solvent 

exposed residues’ the C, N and O distribution occurs at 3.8, 3.0 and 2.8 Å, respectively 

and the distribution functions at 273 K have slightly higher values than the values at the 

higher temperatures. 
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Translational dynamics of bulk and protein-hydration waters 

The combination of Einstein’s fluctuation dissipation theorem (36) and the 

macroscopic continuum hydrodynamics (37) for the friction coefficients of a sphere of 

radius ‘a’ undergoing steady state translational diffusion yields the Stokes-Einstein 

equation, 

a
Tk

D B
S πη6

=         [1] 

where kB is Boltzmann’s constant (1.3806 ×10-23 m2kgs-2K-1), T is the temperature in K, 

and η is water viscosity (Nsm-2). ,The viscosity of water, as a function of temperature, 

follows the definition of a glass-forming liquid (38) and at temperatures above 242K, it 

follows an empirical Vogel-Tamman-Fulcher (VTF)-type relationship 

(η = − − 0exp( /( ))A B T T , where A, B, and T0 are constants (38). Diffusion constants of 

water have been measured using nuclear magnetic resonance (NMR) pulsed-field-

gradient (PFG) methods (39) and these measurements also followed VTF-type relation 

ship ( = − − 0exp( /( ))SD A B T T , with constants A = 4.00 × 10-8 m2 s-1, B = 371 K-1 and T0 

= 169.7 K. These numbers are close to the one derived by Miller (38). Therefore, a plot 

of Ds versus T/η is expected to be linear and can be used as a quantitative measure of 

the change in the diffusion constant as a function of temperature. Figure 3 shows plots 

of the diffusion coefficient as a function of T/η for CPI (Fig 3a) and Ovomucoid (Fig. 3b).  

Experimentally measured bulk water diffusion coefficients (39) are shown as open 

circles in both Figures 3a and 3b. Diffusion constant of the bulk water from the molecular 

dynamics simulations are shown as filled circles. Hydration (surface) water molecules 

calculated using a cutoff at 3.4 Å and 5.0 Å are shown by triangles and triangles and 

squares, respectively. The bulk water diffusion constants (filled circles in Fig 3) are 
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calculated independently for CPI and Ovomucoid systems. The straight lines thorough 

the points represent corresponding linear fit and the dashed lines correspond to the 

respective 95% confidence limits. The literature values for η follow the well defined 

empirical relations for pure water (39) and it is assumed that the bulk viscosity is not 

altered at low protein concentration.  

Table 1 summarizes translational diffusion constants for bulk and hydration water 

from the CPI and Ovomucoid simulations and the respective experimental bulk water 

values. Table 1 also lists the reduction in the translational diffusion constant of the 

hydration water in percentage for each temperature with respect to the corresponding 

bulk water diffusion coefficients. It is evident from Fig.3 and from Table 1 that the 

diffusion coefficients of bulk-water in the protein water system is very similar to the 

respective experimental values and the diffusion behavior of the hydration water is 

retarded significantly, with a temperature dependent scaling. At low temperatures, the 

scaling effects are larger than at higher temperatures for both the proteins; For example, 

using a cutoff value of 3.4 Å, the hydration water diffusion is scaled by 48-54 % with 

respect to the bulk water at lower temperatures (273 K), and between 37-43 % at higher 

temperatures (303 K). At a cutoff value of 5.0 Å, the scaling is 35-38% in the low 

temperature region (273K) and 23-30% at the high temperature region (303K). Within 

the cutoff radius of 5 Å includes waters in contact with nonpolar heavy atoms, such as 

methyl groups. These interactions are weaker than the polar interactions observed within 

the 3.4 Å cutoffs and allow the water to diffuse away from the protein more easily. As the 

water molecules are sampled at a higher cutoff value, farther away from the protein 

surface the results consistently show that the hydration water molecules progressively 

tend to attain the characteristics of the bulk water behavior. Although the actual scaling 

at each temperature for CPI and Ovomucoid is different, the rate of scaling obtained 
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using the linear fit with respect to (T/η) is similar, for both the scaling factors. The 

variation of DS values with respect to (T/η) is analyzed using linear regression methods 

and the results are summarized in Table 2. The temperature dependence of bulk water 

from the protein water system is very close to that of the experimental values (6.91 

± 0.06 N/K and 6.37 ± 0.02 N/K, for CPI and Ovomucoid, respectively), and the 

experimental bulk water has a slope of 6.64 ± 0.01 N/K. The rate of change of Ds with 

T/η shows how closely the simulated values resemble the experimental values. The 

same metric can also be used as a measure to compare the diffusion characteristics 

between the surface and bulk waters in the protein-water system. Overall, the 

temperature dependence of the translation diffusion of bulk water from the simulations is 

in reasonable agreement of the simulations to experiments. Comparison of the 

calculated diffusion coefficients between the bulk and hydration water molecules (Figure 

3 and Table 2) shows the protein induced rate change of solvent translational diffusion 

coefficient with respect to T/η is ~30% at a cutoff 3.4 Å (26.9 % and 33.3 % for CPI and 

Ovomucoid, respectively) ~18% at a cutoff 5.0Å (16.9% and 19.9 for CPI and 

Ovomucoid, respectively) over the temperature range studied.  

Influence of polar and nonpolar residues on water diffusion. 

Interaction between the protein and water molecules is not uniform at the surface 

and it is largely determined by the nature of the surface exposed amino acids. Table 3 

lists the diffusion coefficient of water molecules (calculated at a cutoff of 3.4 Å) close to 

the surface polar and nonpolar residues. In general the diffusion constant of water 

molecules close to the polar residues are slightly higher than the nonpolar ones.  The 

difference in the diffusion constants are in the range of 0.1 to 0.3 (10-9 m2s-1) and these 

differences are tend to be slightly larger for CPI than for Ovomucoid. The temperature 

dependence on the influences of diffusion coefficients between polar and nonpolar 
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residues is complex and can arise from several factors: For example the hydrophobic 

effect increases with increase in temperature (40,41) reflecting increased disparity 

between perturbed waters forced to align themselves around nonpolar groups (42) and 

those free to interact with bulk solvent.  

Hydration hydrodynamics 

The observed variation in the diffusion coefficient of protein hydration water 

molecules, from the Stokes-Einstein equation (Eq. [1]) can arise either due to a change 

in the viscosity (η) or the radius (a) or both. Experimental measurement of the bulk water 

rotational correlation time (τs) follows the viscosity over a wide range of temperatures 

(43) and in fact the observed change in the radius is only 1.7% in the temperature range 

of –10º to 60°C (44). Therefore, the assumption that modulation of the translational 

dynamics of hydration water molecules is predominantly due local changes in the 

viscosity induced by frictional coupling between the protein and surface waters is 

reasonable. 

Hydration hydrodynamics model shows that the frictional coupling between 

protein and solvent is a major contributing factor for observed changes in protein 

dynamics  (32). In this model, the ratio of the translational diffusion constant of a protein 

that is perturbed by the solvent ( PD ) to the unperturbed ( o
PD ) is given by 

( ) 







−−−=

S

o
To

P

P

D
D

η
η

α 111       [2] 

where ηo and ηs the viscosity of bulk and surface water molecules, respectively 

and αT is the geometrical quantity for the translational motion given by 



Page 10 of 32 

3
1









+

=
SP

P
T VV

V
α        [3] 

where VP is the volume of the protein immersed inside an incompressible liquid of 

viscosity ηs within a spherical shell of volume VS and the bulk value of viscosity ηo 

everywhere else. When VS = 0 and/or ηs = ηo, water molecules are not influenced by the 

protein and conversely the protein dynamics is described by the Stokes-Einstein 

equation (similar to Eq. [1], but for the proteins). At the other limit when ηs >> ηo, referred 

to as ‘solvent-berg’ limit, the protein molecule has the most influence on hydration water 

molecules and a clear distinction with bulk water is established (32).  

 Rewriting Eq. [2] in terms of the solvent translation dynamics with the 

assumption that the radius of the water molecule remains the same between bulk and 

hydration conditions,  
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Equation [4] shows that the translational dynamics of hydration water is directly related 

to the dynamic parameters of the protein. Therefore, it is possible to estimate the RHS of 

Eq. [4] to determine the expected scaling of the hydration waters with respect to bulk 

water. The two parameters that need to be estimated are αT and o
P

P
D

D .  

Geometrical factor αT is normally estimated from the three dimensional structural 

parameters by assuming that the volume of the hydration shell (VS) is proportional to the 

protein surface area AP, 
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PSS AV λ=         [5] 

where the effective shell thickness λS, can be assumed to be 2 Å (less than its diameter, 

2.8 Å)(32). Table 4 lists the molecular properties for CPI and Ovomucoid, including 

surface area, molecular volume, and Stokes volume along with the estimated αT values.  

Using the molecular surface area of CPI and Ovomucoid estimated from their 3D 

structures (Table 4), the average value for αT becomes 0.76. As a comparison, the 

geometrical factor estimated for rotational contribution is 0.56 and the corresponding 

translational value is 0.82 ( 3
RT αα = ) for lysozyme.  Alternatively, we have calculated 

the geometrical factor, where VS in Eq. [5] is assumed to be equal to the corresponding 

Stokes volume (Table 4) of the protein. This procedure resulted in slightly smaller values 

of αT ~0.71 for both proteins than the first procedure. 

In order to determine the second ratio ( o
P

P
D

D ), o
PD  diffusion constant of the 

non-hydrated protein is traditionally estimated from Eq.[1], where the effective radius is 

determined from the volume estimated by PPP MV ν= , where MP is the molecular weight 

and Pν  is the partial specific volume (0.073 m3kg-1). To account for the temperature 

dependence of DP values, we calculated the translational diffusion constant of the 

proteins as a function of the hydration-scaling factor (variable effective atomic radius) 

and the results are extrapolated to no-hydration to determine o
PD  (DP solvent 

unperturbed diffusion). Figure S1 (supporting information)  shows the plot of the 

calculated self-diffusion coefficient for CPI and Ovomucoid as a function of the scaling 

factor (see materials and methods) and averaged over the range of temperatures 

simulated (273-303 K) along with the linear regression  (continuous lines) and 
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confidence interval at 95% (dotted lines). The intercept that corresponds to o
PD  is 

estimated to be 16.4 × 10-10 m-2s-1 (m2s-1) and 14.4 × 10-10 m-2s-1 (m2s-1), for CPI and 

Ovomucoid respectively (Table 2).  Estimation of DP is approximate as the exact nature 

of the hydration depends critically on the surface composition. Comparison of the 

rotational correlation times of proteins determined using NMR based relaxation 

methods(45,46) suggest that scaling factors typically vary between 2.8 Å and 3.8 Å, with 

the distribution centered at 3.3 Å. Therefore when using a hydration scaling radius of 

3.3 Å to estimate DP, the hydration hydrodynamics theory predicts a reduction in the 

translational diffusion coefficient of hydration water between 39-82% (39-75% for CPI 

and 41-84% for Ovomucoid), with respect to the bulk water over the temperature range 

simulated. In comparison, MD simulations (Table 1) estimate a reduction of 35-52 % with 

respect to the bulk water (37-48% for CPI and 43-52% for Ovomucoid). Increasing the 

cutoff value to determine the hydration water diffusion constants from 3.4 to 5.0 Å (Table 

1), this range reduces to 23-38%. This change in the reduction is an outcome of the fact 

that at 5.0 Å cutoff, the protein surface has less influence on the hydration waters and 

adopts more ‘bulk-like’ behavior. Although the hydration hydrodynamics based prediction 

do not match with the MD simulations perfectly, there is a good agreement between the 

results. For example, using the experimental information on 17O magnetic resonance 

dispersion studies, Halle and Davidovic (32) adopted an average value of 0

s

τ
τ

 (ratio of 

the rotational correlation times of bulk and hydration water) to be 0.35. Indeed, 

experimental rotational correlation based validation is a better method as it is much more 

sensitive and localized in comparison with the translational diffusion. It must be 

emphasized that variations in DP values estimated from the hydrodynamics calculations 

are approximate as they do not account for the variation in the temperature and viscosity 
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explicitly. More importantly, these results do not reflect the finer changes that occur 

locally on the protein surfaces such as cavities.  
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Discussion 

Water mobility in the proximity of the protein surface exhibits a wide range of 

dynamical behaviors; from very tightly bound water to highly mobile water molecules. 

Different categories of water behavior can be characterized depending on their 

residence times. One type is strongly bound to (in) the protein, which can be identified 

crystallographically and plays an important role in stabilizing the native structure. The 

residence time of these water molecules is usually in the range of 10
-9 

to 10
-3 

s. Another 

type of water is more dynamic (shorter residence times) and is interfacial in nature. The 

third type of water is in the vicinity of the protein surface but not directly interacting with 

the protein and displays bulk-like behavior. Our main interest is in the dynamics of the 

third class of water molecules that predominantly determine the hydration structure on 

protein surfaces.  

The radial distribution functions of water with respect to various protein atomic 

sites reveal the structural organization of water near the protein surface (8,47). The 

radial distribution functions around the polar and nonpolar atomic sites have similar 

distribution between the two proteins studied. The effect of polar vs. nonpolar residue's 

influence is more clearly seen in the respective water diffusion coefficients (Table 3). 

Temperature dependence of the hydration hydrodynamics is schematically shown in 

figure 4. Figure 4 was generated by placing the protein at the origin at every time step. 

A 50 Å3 grid with 1 Å3 spacing was used to count up the number density of the oxygen’s 

in water for 1 ns. The top and bottom rows show the results for CPI and Ovomucoid, 

respectively. With increase in temperature density of water molecules surrounding the 

protein decreases.  It is interesting to note that the change in the density is not uniform 

around the surface, with concave surfaces on both the proteins continue to maintain a 

higher density of water molecules even at higher temperatures. Surface shape effects 
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are not unusual as evidenced by  Hua et al., (47) that concave regions have a broader 

distribution compared to the sites in the convex region.  Though the surface composition 

of the protein affects the hydration dynamics, the proteins themselves do not undergo 

any large-scale dynamics over the simulation length.  For example, the variation in the 

radius of gyration (Rg) over the last 1ns of the simulation of the protein shows only a 

little variation comparison with the Rg estimated from their respective X-ray structures 

(Table S1). 

Extensive experimental information on the rotational and translational dynamics 

of bulk water is available. However, characterization of the hydration water is often 

inferred indirectly from the dynamic parameters of the protein. Experimental values of 

hydration water determined using magnetic resonance dispersion studies are about 5 

times smaller than the bulk water  (6) and that by neutron scattering tend to predict much 

less that factor of 5  (1). Recently, Marchi et al  (48), have performed MD simulations of 

lysozyme at 300K found that hydration water dynamics is scaled between 3-7 times 

depending on the definition of the hydration shell. Our results are in broad agreement 

with the magnetic relaxation dispersion studies and other MD simulations in general. We 

have shown here how the translational dynamics of water molecules can be followed 

using MD simulations and explained based on hydration hydrodynamics. The exact 

nature of the mechanism however needs extensive and accurate experimental data on 

the global translational motion of proteins as a function of temperature.  

At large distances from the protein surface, as is presented here, the bulk water 

diffusion results are closely reproduced by simulation. However, the simulation results 

on the surface water molecules tend to be more inconsistent (5). In addition to the 

current results, several important observations were made and these can be classified 

into three major classes; (a) anisotropic diffusion of water on the protein surface (5,49), 
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(b) anomalous diffusion of the water that introduces a non-linear behavior to the Stokes-

Einstein equation to describe the water diffusion in the presence of proteins (50-52) and 

(c) apparent increase in the density of water molecules close to the protein surface 

(20,53-55). How each of these earlier observed protein surface induced effects on the 

translational behavior of the hydration water molecules needs much more elaborate 

study than what is presented here. Our goal was to first determine the temperature 

dependence of the hydration waters in proteins and then to determine how the 

simulations relate to hydration hydrodynamics theory. The agreement between the 

simulations and the theory is modest and most of the discrepancy between them can be 

traced to a large extent to the estimation of DP. 
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Conclusions 

Water plays a primary role in the flexibility of proteins and is critical to the 

conformational changes required for enzymatic activity (9). The frictional coupling 

between protein motions and water dynamics has been suggested that fluctuations of 

the hydration water can slave the protein dynamics and thus affect its function 

(29,56,57). The interplay between the protein and solvent complexity has several 

intriguing open questions, for example how much water (quantity) is affected by the 

presence of the protein. Most x-ray crystallographic studies have suggested that only the 

first solvent layer is affected, whereas calorimetric studies suggest that more than one 

layer is affected. Recently, Bano and Marek (58) have investigated the volume 

properties of protein hydration layers by Monte Carlo modeling. The thickness of the 

thermal volume layer as calculated in their framework of the scaled particle theory is 0.6-

0.65 Å. This value is significantly lower than ones presented for proteins in earlier papers 

(where proportionality between the hydration level and the area of charged and polar 

surfaces was assumed), but is close to the value published for small solute molecules. 

At the other extreme, certain glycoproteins tend be much more hydrated than most 

globular proteins and a scaling factor of > 5.5 Å is required to fit the temperature 

dependent translational diffusion coefficient. These differences in hydration properties 

could be natural to the protein and its function, in particular for proteins that function at 

extreme environments such as thermophilic or antifreeze proteins. We expect that new 

experimental approaches to measure the dynamic properties of the hydration layer and 

improved simulation methods will shed additional information. Our results provide one of 

the necessary steps that will lead to a comprehensive understanding of the role of 

hydration hydrodynamics in proteins structure, dynamics, as well as function. 
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Materials and Methods 
Molecular Dynamics Simulations 

All molecular dynamics simulations were performed with Amber 7 (59) using the 

Cornell force field (60). The proteins were chosen because of their small size and can be 

simulated with an overall neutral charge, thus no counterions are necessary. The 

carboxypeptidase inhibitor (RCSB ID, 1H20, first 37 residues) (61) and ovomucoid 

(RCSB ID, 2OVO) (62) were prepared in the following manner. The proteins were 

solvated in boxes of SPC/E (63) water sufficient to have 15 Å of water between the 

protein and the interface. SPC/E water was chosen because of its well-characterized 

behavior over a large range of temperatures (64). The system was energy minimized 

using a combination of steepest descents and conjugate gradient methods. Constant 

pressure, constant temperature molecular dynamics (65) was performed on the energy 

minimized system to randomize the water and to adjust the water density. A time step of 

1 fs was used and the SHAKE algorithm was used to constrain bonds containing 

hydrogen (66).  The system was coupled to a heat bath at 303 K. Particle mesh Ewald 

summation was used to treat the long range interactions using a 9 Å cutoff in direct 

space with an 1 Å grid (67). The NPT simulations for the caroboxypeptidase inhibitor and 

ovomucoid were performed for 200 ps. 

The final structure from the NPT simulation was energy minimized. This energy-

minimized structure was used as the starting structure for all the NVE simulations and 

the box size was adjusted to have the appropriate density at the given temperature. All 

the NVE simulations started at 0 K and the velocities on the atoms were reassigned until 

they were at the appropriate temperature. All other aspects of the simulations were the 

same as stated above. Each simulation at a given temperature was run for a total of 2 ns 

with the last 1 ns were used for analysis. 
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The mean squared displacements (MSD) for bulk solvent were calculated in 100 

ps windows and averaged. Diffusion constants for the bulk solvent were estimated from 

the slope of the MSD and multiplied by 5/3 to obtain the correct units (The mean 

squared displacement plotted against time for the simulation data gives a slope in Å2/ps. 

To convert to the appropriate units for a diffusion constant we get cm2/s(*10) and divide 

by 6 (for the degrees of freedom)). Hydration water was defined using two independent 

values, within 3.4 Å of a heavy protein atom and 5.0 Å of a heavy protein atom. 

Inspection of the MSD for the hydration waters over 100 ps shows two regimes. The 

MSD is linear to approximately 50 ps at the different temperatures but after 50 ps, the 

slope of the MSD increases (likely showing the hydration water exchanging to the bulk). 

The diffusion constants for the hydration waters were estimated with 50 ps windows and 

averaged.  

Protein Hydrodynamic Calculations 

Translational diffusion tensor values were calculated based on the beads model 

approximation of García de la Torre and Bloomfield (68). This method has been used 

successfully to calculate translational as well as rotational diffusion tensors of proteins 

(46,69-73). In this method, the protein is modeled as a collection of point sources of 

friction (denoted as beads) with hydrodynamic tensor interactions between them. The 

rotational diffusion tensor is calculated from a set of linear equations solved by 

integrating a 3N × 3N matrix, where N is the number of atoms determined from the 

structure of the protein. The program DIFFC, based on the beads theory (73), was used 

in the present work. All atoms were considered as beads of equal size for a range of 

different values (σ = 1.5 to 5.5 in steps of 1Å, and at 7 temperature values ranging from 

273 K to 303 K) for purposes of calculating the diffusion tensor as a function of 

temperature. Experimental values of the viscosity (in Nsm-2) of pure water (74) were 
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used. The overall isotropic translational self-diffusion coefficient was calculated by taking 

the average of the principal values of the diffusion tensor.  
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Figure Captions 

Figure 1: Uncorrected water-protein radial distribution functions around 

equilibrated CPI, nonpolar (left panels) and polar (right panels) as a function of the 

distance between backbone α-carbon (a and d), carbonyl (b and e) and nitrogen (c and 

f) atoms to the water oxygen atom. Three representative temperatures at 273, 288 and 

303K were shown as continuous (black), long-dashed (red) and dashed (green) lines. 

Figure 2: Uncorrected water-protein radial distribution functions around 

equilibrated Ovomucoid, nonpolar (left panels) and polar (right panels) as a function of 

the distance between backbone α-carbon (a and d), carbonyl (b and e) and nitrogen (c 

and f) atoms to the water oxygen atom. Three representative temperatures at 273, 288 

and 303K were shown as continuous (black), long-dashed (red) and dashed (green) 

lines. 

Figure 3: Plot of Ds versus T/η for the various water molecules for (a) CPI and (b) 

Ovomucoid. Experimentally determined bulk water (open circles), bulk water molecules 

in the simulation (filled circles) and hydration (surface) water molecules on the protein 

(triangles and filled squares) are shown. The hydration water diffusion with a cutoff of 3.4 

Å and 5.0Å were shown as triangles and squares, respectively for each protein. The 

experimental bulk water diffusion values are same in both (a) and (b), while the 

simulated values are calculated separately for CPI and Ovomucoid. The straight lines 

are the linear fit and the dotted lines correspond to the respective 95% confidence limits, 

confidence limits for the experimental values are not plotted.  

Figure 4: Schematic representation of hydration hydrodynamics effects for CPI and 

Ovomucoid at the top and bottom respectively. The top row shows cartoon views of 

CPI at 273, 288 and 303 K, respectively where the grids represent density of water 
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molecules surrounding the protein and bottom row show a similar representation for 

OVO.   

 

 

 



Page 23 of 32 

Table 
Table 1: Translational diffusion constants of the bulk and hydration waters  

 

 (a) Experimental values were obtained from  (75). 

 
 

Translational Diffusion Constant (× 10-9 m2s-1) 
Experimental (a) CPI Ovomucoid 

Bulk water 

Hydration water
  ( H

SD ) ∆DS (%) 

Hydration water
  ( H

SD ) ∆DS (%) 
Temperature 

(K)  

Bulk water 
 ( o

SD ) 
3.4Å 

 5.0 Å 3.4 Å 5.0 Å 

Bulk water 
 ( o

SD ) 
3.4Å 

 5.0 Å 3.4 Å 5.0 Å 
273 1.10 1.31 0.68 0.84 48.1 35.9 1.30 0.62 0.80 52.3 38.7 
278 1.30 1.53 0.82 0.99 46.4 35.6 1.57 0.78 1.01 50.3 36.0 
283 1.53 1.76 0.99 1.20 43.8 31.8 1.78 0.94 1.15 47.2 35.6 
288 1.77 1.97 1.16 1.39 41.1 29.6 1.96 1.08 1.36 44.9 30.5 
293 2.02 2.24 1.34 1.51 40.2 32.5 2.25 1.21 1.52 46.2 32.5 
298 2.30 2.52 1.57 1.75 37.7 30.7 2.42 1.42 1.73 41.3 28.4 
303 2.59 2.84 1.78 2.17 37.3 23.5 2.75 1.55 1.93 43.6 30.0 
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Table 2: Linear regression analysis of the temperature dependence of hydration 

waters. 

Bulk water Hydration water 

 System Intercept Slope CC 
Intercept 

 
Slope 

 CC 
Experimental 0.14 ±0.01  6.64 ±0.01 > 0.99       

CPI-water  
 (3.4Å) 

0.28 ±0.01  
6.91 ±0.06 > 0.99 -0.08 ±0.01

5.05 ±0.04  
> 0.99

 (5.0Å)    -0.04 ±0.01 5.74 ±0.04  > 0.99
Ovomucoid-water 

 (3.4Å) 
0.39 ±0.05  

6.37 ±0.02 > 0.99 0.03 ±0.01
4.24 ±0.1  

> 0.99
 (5.0Å)    -0.07 ±0.03 5.1 ±0.01 > 0.99

 
CC: Correlation coefficient 
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Table 3: Diffusion coefficients of water molecules at the polar and nonpolar 

surface residues. 

 aTranslational Diffusion Constant (× 10-9 m2s-1) 

Temperate (K) Ovomucoid CPI 

  
Polar 

Residues 
Nonpolar 
Residues 

Polar 
Residues 

Nonpolar 
Residues 

273 0.61 0.47 0.68 0.51 
278 0.80 0.66 0.86 0.65 
283 0.96 0.83 1.02 0.81 
288 1.05 1.00 1.21 0.97 
293 1.20 1.08 1.36 1.14 
293 1.39 1.33 1.66 1.23 

303 1.52 1.43 1.88 1.44 

a Diffusion coefficients are calculated at a cutoff value of 3.4Å 
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Table 4: Estimation of Diffusion scaling of water due to hydration 

Protein MW (kD) 
Surface 

Area (Å2) 

Molecular 
Volume 

(Å3) 

Stokes 
Volume 

(Å3) αT
o
PD

Hydrodynamic 
Scale (Å) 

H
PD  ∆DS  (%) 

CPI 
(1H20) 4.28 2776.40 4364.20 7494.53 0.71 16.4

2.0- 4.0 
14.49-12.74

 
39-75 

OVO 
(2OVO) 6.02 3973.20 6486.00 11056.37 0.72 14.4

2.0- 4.0 
12.75-11.06 41-82 

PD  and PD  are solvent and unperturbed translational diffusion constants, respectively 

and αT is defined in Eq.[3]. 
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Table S1: Radius of gyration during the dynamic simulation 

 

 

 

  

 

 

a Radius of gyration (using CA for calculation) for proteins was calculated during 

the last 1ns of the simulation. 

Temperature (K) 
Ovomucoid 

Rg  (Å) 
CPI 

Rg  (Å) 
X-ray structure 10.17 8.11 

273 10.36 ± 0.12 8.32 ± 0.08 

278 10.35 ±  0.13 8.31 ± 0.06 

283 10.24 ± 0.13 8.3 ±  0.1 

288 10.31 ± 0.12 8.36 ± 0.05 

293 10.2 ± 0.12 8.35 ±  0.07 

298 10.2 ±  0.13 8.31 ±  0.14 

303 10.44 ±  0.09 8.38 ± 0.07 



Page 28 of 32 

References 

(1) M Ferrand, A Dianoux, W Petry, G ZaccaiI: Thermal motions and function of 
bacteriorhodopsin in purple membranes- Effecrs of temperature and hydration studied 
by neutron-scattering. Proceedings of the National Academy of Sciences of the United 
States of America 90 (1993) 9668-72. 

(2) HX Zhou: A unified picture of protein hydration: prediction of hydrodynamic 
properties from known structures. Biophysical Chemistry 93 (2001) 171-79. 

(3) RH Henchman, JA McCammon: Structural and dynamic properties of water 
around acetylcholinesterase. Protein Science 11 (2002) 2080-90. 

(4) JC Smith, F Merzel, CS Verma, S Fischer: Protein hydration water: Structure and 
thermodynamics. Journal of Molecular Liquids 101 (2002) 27-33. 

(5) A Bizzarri, S Cannistraro: Molecular dynamics of water at the protein-solvent 
interface. Journal of Physical Chemistry B 106 (2002) 6617-33. 

(6) B Halle: Protein hydration dynamics in solution: a critical survey. Philos Trans R 
Soc Lond B Biol Sci 359 (2004) 1207-23; discussion 23-4, 323-8. 

(7) B Bagchi: Water dynamics in the hydration layer around proteins and micelles. 
Chemical Reviews 105 (2005) 3197-219. 

(8) TM Raschke: Water structure and interactions with protein surfaces. Curr Opin 
Struct Biol 16 (2006) 1-8. 

(9) Y Levy, JN Onuchic: Water Mediation in Protein Folding and Molecular 
Recognition. Annu Rev Biophys Biomol Struct 35 (2006) 389-415. 

(10) S Bone, R Pethig: Dielectric studies of protein hydration and hydration-induced 
flexibility. Journal of Molecular Biology 181 (1985) 323-26. 

(11) U Langhorst, R Loris, V Denisov, J Doumen, P Roose, D Maes, B Halle, J 
Steyaert: Dissection of the structural and functional role of a conserved hydration site in 
RNase T1. Protein Science 8 (1999) 722-30. 

(12) K Venu, L Svensson, B Halle: Orientational order and dynamics of hydration 
water in a single crystal of bovine pancreatic trypsin inhibitor. Biophysical Journal 77 
(1999) 1074-85. 

(13) V Lounnas, S Ludemann, R Wade: Towards molecular dynamics simulation of 
large proteins with a hydration shell at constant pressure. Biophysical Chemistry 78 
(1999) 157-82. 

(14) R Jaenicke, H Lilie: Folding and association of oligomeric and multimeric 
proteins. Advances in Protein Chemistry 53 (2000) 329-+. 

(15) A Royant, K Edman, T Ursby, E Pebay-Peyroula, E Landau, R Neutze: Helix 
deformation is coupled to vectorial proton transport in the photocycle of 
bacteriorhodopsin. Nature 406 (2000) 645-48. 

(16) J Rupley, G Careri: Protein hydration and function. Advances in Protein 
Chemistry 41 (1991) 37-172. 

(17) G Otting, E Liepinsh, K Wuthrich: Protein hydration in aqueous solution. Science 
254 (1991) 974-80. 



Page 29 of 32 

(18) VP Denisov, B Halle: Protein hydration dynamics in aqueous solution: a 
comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin 
relaxation dispersion. J Mol Biol 245 (1995) 682-97. 

(19) B Halle, VP Denisov: A new view of water dynamics in immobilized proteins. 
Biophys J 69 (1995) 242-9. 

(20) DI Svergun, S Richard, MH Koch, Z Sayers, S Kuprin, G Zaccai: Protein 
hydration in solution: experimental observation by x-ray and neutron scattering. Proc 
Natl Acad Sci U S A 95 (1998) 2267-72. 

(21) J Badger, DL Caspar: Water structure in cubic insulin crystals. Proc Natl Acad 
Sci U S A 88 (1991) 622-6. 

(22) MM Teeter, SM Roe, NH Heo: Atomic resolution (0.83 A) crystal structure of the 
hydrophobic protein crambin at 130 K. J Mol Biol 230 (1993) 292-311. 

(23) FT Burling, WI Weis, KM Flaherty, AT Brunger: Direct observation of protein 
solvation and discrete disorder with experimental crystallographic phases. Science 271 
(1996) 72-7. 

(24) AD Podjarny, EI Howard, A Urzhumtsev, JR Grigera: A multicopy modeling of the 
water distribution in macromolecular crystals. Proteins 28 (1997) 303-12. 

(25) BP Schoenborn, A Garcia, R Knott: Hydration in protein crystallography. Prog 
Biophys Mol Biol 64 (1995) 105-19. 

(26) N Niimura, Y Minezaki, T Nonaka, JC Castagna, F Cipriani, P Hoghoj, MS 
Lehmann, C Wilkinson: Neutron Laue diffractometry with an imaging plate provides an 
effective data collection regime for neutron protein crystallography. Nat Struct Biol 4 
(1997) 909-14. 

(27) F Shu, V Ramakrishnan, BP Schoenborn: Enhanced visibility of hydrogen atoms 
by neutron crystallography on fully deuterated myoglobin. Proc Natl Acad Sci U S A 97 
(2000) 3872-7. 

(28) V Makarov, B Andrews, P Smith, B Pettitt: Residence times of water molecules in 
the hydration sites of myoglobin. Biophysical Journal 79 (2000) 2966-74. 

(29) V Makarov, B Pettitt, M Feig: Solvation and hydration of proteins and mucleic 
acids: A theoretical view of simulation and experiment. Accounts in Chemical Research 
35 (2002) 376-84. 

(30) B Pettitt, V Makarov, B Andrews: Protein hydration density: theory, simulations 
and crystallography. Current Opinion in Structural Biology 8 (1998) 218-21. 

(31) C Gonzalez, JL Neira, S Ventura, S Bronsoms, M Rico, FX Aviles: Structure and 
dynamics of the potato carboxypeptidase inhibitor by 1H and 15N NMR. Proteins 50 
(2003) 410-22. 

(32) B Halle, M Davidovic: Biomolecular hydration: from water dynamics to 
hydrodynamics. Proc Natl Acad Sci U S A 100 (2003) 12135-40. 

(33) M Levitt, R Sharon: Accurate simulation of protein dynamucs in solution. 
Proceedings of the National Academy of Sciences of the United States of America 85 
(1988) 7557-61. 

(34) G Phillips, B Pettitt: Structure and dynamics of the water around myoglobin. 
Protein Science 4 (1995) 149-58. 



Page 30 of 32 

(35) W Gu, BP Schoenborn: Molecular dynamics simulation of hydration in myoglobin. 
Proteins 22 (1995) 20-6. 

(36) A Einstein: Investigations on the theory of Brownian movement, Dover, New 
York, 1956. 

(37) L Landau, D, EM Lifshitz: Fluid Mechanics, Pergamon, Oxford, 1959. 

(38) AA Miller: Glass-transition temperature of water. Science 163 (1969) 1325-26. 

(39) WS Price, H Ide, Y Arata: Self-diffusion of supercooled water to 238 K using 
PGSE NMR diffusion measurements. Journal of Physical Chemistry a 103 (1999) 448-
50. 

(40) W Kauzmann: Some factors in the interpretation of protein denaturation. Adv 
Protein Chem 14 (1959) 1-63. 

(41) C Tanford, PK De: The unfolding of beta-lactoglobulin at pH 3 by urea, 
formamide, and other organic substances. J Biol Chem 236 (1961) 1711-5. 

(42) C Tanford: Protein denaturation. Adv Protein Chem 23 (1968) 121-282. 

(43) K Modig, B Halle: Proton magnetic shielding tensor in liquid water. J Am Chem 
Soc 124 (2002) 12031-41. 

(44) P Balbuena, K Johnston, P Rossky, J Hyun: Aqueous ion transport properties 
and water reorientation dynamics from ambient to supercritical conditions. Journal of 
Physical Chemistry B 102 (1998) 3806-14. 

(45) P Bernado, J Garcia de la Torre, M Pons: Interpretation of 15N NMR relaxation 
data of globular proteins using hydrodynamic calculations with HYDRONMR. J Biomol 
NMR 23 (2002) 139-50. 

(46) VV Krishnan, M Cosman: An empirical relationship between rotational correlation 
time and solvent accessible surface area. Journal of Biomolecular NMR 12 (1998) 177-
82. 

(47) L Hua, XH Huang, RH Zhou, BJ Berne: Dynamics of water confined in the 
interdomain region of a multidomain protein. Journal of Physical Chemistry B 110 (2006) 
3704-11. 

(48) M Marchi, F Sterpone, M Ceccarelli: Water rotational relaxation and diffusion in 
hydrated lysozyme. J Am Chem Soc 124 (2002) 6787-91. 

(49) P Ahlstrom, O Teleman, B Jonsson: Molecular dynamucs simulation of interfacial 
water structure and dynamics in parvalbumin solution. Journal of American Chemical 
Society 110 (1988) 4198-203. 

(50) A Bizzarri, S Cannistraro: Molecular dynamics simulation evidence of anomalous 
diffusion of protein hydration water. Physical Review E 53 (1996) R3040-R43. 

(51) A Bizzarri, C Rocchi, S Cannistraro: Origin of the anomalous diffusion observed 
by MD simulation at the protein-water interface. Chemical Physics Letters 263 (1996) 
559-66. 

(52) AR Bizzarri, S Cannistraro: Molecular dynamics simulation evidence of 
anomalous diffusion of protein hydration water. Physical Review. E. Statistical Physics, 
Plasmas, Fluids, And Related Interdisciplinary Topics 53 (1996) R3040-R43. 



Page 31 of 32 

(53) F Merzel, JC Smith: High-density hydration layer of lysozymes: molecular 
dynamics decomposition of solution scattering data. J Chem Inf Model 45 (2005) 1593-9. 

(54) F Merzel, JC Smith: Is the first hydration shell of lysozyme of higher density than 
bulk water? Proceedings of the National Academy of Sciences of the United States of 
America 99 (2002) 5378-83. 

(55) JC Smith, F Merzel, AN Bondar, A Tournier, S Fischer: Structure, dynamics and 
reactions of protein hydration water. Philos Trans R Soc Lond B Biol Sci 359 (2004) 
1181-9; discussion 89-90. 

(56) A Ansari, CM Jones, ER Henry, J Hofrichter, WA Eaton: The role of solvent 
viscosity in the dynamics of protein conformational changes. Science 256 (1992) 1796-8. 

(57) PW Fenimore, H Frauenfelder, BH McMahon, FG Parak: Slaving: solvent 
fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci U S A 99 
(2002) 16047-51. 

(58) M Bano, J Marek: How thick is the layer of thermal volume surrounding the 
protein? Biophys Chem 120 (2006) 44-54. 

(59) DA Pearlman, Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, 
Debolt, S., Ferguson, D., Seibel, G., and Kollman, P. A.: AMBER, A Package of 
Computer Programs for Applying Molecular Mechanics, Normal-Mode Analysis, 
Molecular Dynamics, and Free Energy Calculations to Simulate the Structural and 
Energetic Properties of Molecules. Comput. Phys. Commun. 91 (1995) 1-41. 

(60) WD Cornell, Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., 
Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A.: A 2nd Generation Force 
Field for the Simulation of Protein, Nucleic Acids, and Organic Molecules. J. Am. Chem. 
Soc. 117 (1995) 5179-97. 

(61) C Gonzalez, Neira, J. L., Ventura, S., Bronsoms, S., Rico, M., Aviles, X.: 
Structure and Dynamics of the Potato Carboxypeptidase Inhibitor by 1H and 15N NMR. 
Proteins: Struct., Funct., Genet. 50 (2003) 410-22. 

(62) W Bode, Epp, O., Huber, R., Laskowski, M., Ardelt, W.: The Crystal and 
Molecular Structure of the Third Domain of Silver Pheasant Ovomucoid (OMSVP3). 
Euro. J. Biochem. 147 (1985) 387-95. 

(63) HJC Berendsen, Grigera, J. R., Straatsma, T. P.: The Missing Term in Effective 
Pair Potential. J. Phys. Chem. 91 (1987) 6269-71. 

(64) S Harrington, Poole, P. H., Sciortion, F., Stanley, H. E.: Equation of State of 
Supercooled Water Simulated using the Extended Simple Point Charge Intermolecular 
Potential. J. Chem. Phys. 107 (1997) 7443-50. 

(65) HJC Berendsen, Postma, J. P. M., van Gunsteren, W. F., DiNola, A., Haak, J. R.: 
Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 81 (1984) 3684-
90. 

(66) JP Ryckaert, Ciccotti, G., and Berendsen, H. J. C.: Numerical Integration of the 
Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-
alkanes. J. Comput. Phys. 23 (1977) 327-41. 

(67) U Essmann, Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. 
G.: A Smooth Particle Ewald Mesh Method. J. Chem. Phys. 103 (1995) 8577-93. 



Page 32 of 32 

(68) JG Garcia de la Torre, VA Bloomfield: Hydrodynamic properties of complex, rigid, 
biological macromolecules: theory and applications. Quarterly Reviews in Biophysics 14 
(1981) 81-139. 

(69) J Garcia de la Torre, ML Huertas, B Carrasco: Calculation of hydrodynamic 
properties of globular proteins from their atomic-level structure. Biophys Journal 78 
(2000) 719-30. 

(70) J Garcia de la Torre, ML Huertas, B Carrasco: HYDRONMR: prediction of NMR 
relaxation of globular proteins from atomic-level structures and hydrodynamic 
calculations. Journal of Magnetic Resonance 147 (2000) 138-46. 

(71) V Krishnan, R Feeney, W Fink, Y Yeh: Translational dynamics of antifreeze 
glycoprotein (AFGP) in supercooled water. Biophysical Journal 82 (2002) 310A-10A. 

(72) VV Krishnan: Determination of oligomeric state of proteins in solution from 
pulsed-field-gradient self-diffusion coefficient measurements. A comparison of 
experimental, theoretical, and hard-sphere approximated values. Journal of Magnetic 
Resonance 124 (1997) 468-73. 

(73) VY Orekhov, DE Nolde, AP Golovanov, DM Korzhnev, AS Arseniev: Processing 
of Heteronuclear NMR Relaxation Data With the New Software Dasha. Applied Magnetic 
Resonance 9 (1995) 581-88. 

(74) CH Cho, J Urquidi, S Singh, GW Robinson: Thermal offset viscosities of liquid 
H2O, D2O, and T2O. Journal of Physical Chemistry B 103 (1999) 1991-94. 

(75) M Holz, S Heil, A Sacco: Temperature-dependent self-diffusion coefficients of 
water and six selected molecular liquids for calibration in accurate H-1 NMR PFG 
measurements. Physical Chemistry Chemical Physics 2 (2000) 4740-42. 

 
 



0.0

0.2

0.4

0.6

CO nonpolar

X Data

2 4 6

R
ad

ia
l D

is
tr

ib
ut

io
n 

Fu
nc

tio
n 
g(
r)

0.0

0.2

0.4

0.6

0.8

2 4 6
0.0

0.2

0.4

0.6

Distance (Å)
2 4 6

CPI
Nonpolar Polar

Figure 1

(a)

(c)

(e)

(b)

(d)

(f)



0.0

0.2

0.4

0.6

CO nonpolar

X Data

2 4 6

R
ad

ia
l D

is
tr

ib
ut

io
n 

Fu
nc

tio
n 
g(
r)

0.0

0.2

0.4

0.6

0.8

2 4 6
0.0

0.2

0.4

0.6

Distance (Å)
2 4 6

Ovomucoid
Nonpolar Polar

(a)

(c)

(e)

(b)

(d)

(f)

Figure 2



Figure 3



273 K 288 K 303 K

CPI

Ovomucoid Figure 4



Figure S1


