Kaolinite dissolution and precipitation kinetics at 22oC and pH 4

PDF Version Also Available for Download.

Description

Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of Gibbs free energy of reaction (or reaction affinity) were measured at 22 C and pH 4 in continuously stirred flowthrough reactors. Steady state dissolution experiments showed slightly incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when dissolved aluminum was varied from 0 and 60 {micro}M. The relationship between dissolution rates and the reaction affinity can be described well by a Transition State Theory ... continued below

Creation Information

Steefel, Carl; Yang, L. & Steefel, C.I. April 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of Gibbs free energy of reaction (or reaction affinity) were measured at 22 C and pH 4 in continuously stirred flowthrough reactors. Steady state dissolution experiments showed slightly incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when dissolved aluminum was varied from 0 and 60 {micro}M. The relationship between dissolution rates and the reaction affinity can be described well by a Transition State Theory (TST) rate formulation with a Temkin coefficient of 2 R{sub diss} (mol/m{sup 2}s) = 1.15 x 10{sup -13} [1-exp(-{Delta}G/2RT)]. Stopping of flow in a close to equilibrium dissolution experiment yielded a solubility constant for kaolinite at 22 C of 10{sup 7.57}. Experiments on the precipitation kinetics of kaolinite showed a more complex behavior. One conducted using kaolinite seed that had previously undergone extensive dissolution under far from equilibrium conditions for 5 months showed a quasi-steady state precipitation rate for 105 hours that was compatible with the TST expression above. After this initial period, however, precipitation rates decreased by an order of magnitude, and like other precipitation experiments conducted at higher supersaturation and without kaolinite seed subjected to extensive prior dissolution, could not be described with the TST law. The initial quasi-steady state rate is interpreted as growth on activated sites created by the dissolution process, but this reversible growth mechanism could not be maintained once these sites were filled. Long-term precipitation rates showed a linear dependence on solution saturation state that is generally consistent with a two dimensional nucleation growth mechanism following the equation R{sub ppt}(mol/m{sup 2}s) = 3.38 x 10{sup -14} exp[- 181776/T{sup 2} 1n{Omega}]. Further analysis using Synchrotron Scanning Transmission X-ray Microscopy (STXM) in Total Electron Yield (TEY) mode of the material from the precipitation experiments showed spectra for newly precipitated material compatible with kaolinite. An idealized set of reactive transport simulations of the chemical weathering of albite to kaolinite using rate laws from HELLMANN and TISSERAND (2006) and this study respectively indicate that while pore waters are likely to be close to equilibrium with respect to kaolinite at pH 4, significant kaolinite supersaturation may occur at higher pH if its precipitation rate is pH dependent.

Source

  • Journal Name: Geochimica et Cosmochimica Acta; Journal Volume: 72; Journal Issue: 1; Related Information: Journal Publication Date: 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-830E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 936583
  • Archival Resource Key: ark:/67531/metadc899873

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 6:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Steefel, Carl; Yang, L. & Steefel, C.I. Kaolinite dissolution and precipitation kinetics at 22oC and pH 4, article, April 1, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc899873/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.