HINS Superconducting Lens and Cryostat Performance

PDF Version Also Available for Download.

Description

Fermi National Accelerator Laboratory is involved in the development of a 60 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. A prototype solenoid cryostat was built and tested at the Fermilab Magnet Test Facility. This paper discusses the test ... continued below

Physical Description

4 pages

Creation Information

Page, T.M.; DiMarco, J.; Huang, Y.; Orris, D.F.; Tartaglia, M.A.; Terechkine, I. et al. August 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Fermi National Accelerator Laboratory is involved in the development of a 60 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. A prototype solenoid cryostat was built and tested at the Fermilab Magnet Test Facility. This paper discusses the test results of the prototype and compares the measured and estimated performance of the cryostat. We also present the methods and results for measuring and fiducializing the axis of the solenoid lens.

Physical Description

4 pages

Source

  • Presented at Applied Superconductivity Conference (ASC 2008), Chicago, Illinois, 17-22 Aug 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-CONF-08-266-TD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 936890
  • Archival Resource Key: ark:/67531/metadc899853

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 29, 2016, 12:48 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Page, T.M.; DiMarco, J.; Huang, Y.; Orris, D.F.; Tartaglia, M.A.; Terechkine, I. et al. HINS Superconducting Lens and Cryostat Performance, article, August 1, 2008; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc899853/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.