Effect of Compressibility on Hyperbolicity and Choke Flow Criterion of the Two-phase Two-fluid Model

PDF Version Also Available for Download.

Description

The standard two-phase two-fluid model lacks hyperbolicity which results in oscillations in the numerical solutions. For the incompressible two-phase flows an exact correction term can be derived which when added to the momentum equations makes the model hyperbolic. No such straightforward approach exists for the similar compressible flows. In the current work, the effect of the compressibility on the characteristic equation is analyzed. It is shown that the hyperbolicity of the system depends only on the slip velocity and not on the phasic velocities, independently. Moreover, a slip Mach number is defined and a non-dimensional characteristic equation is derived. It ... continued below

Creation Information

Singh, Suneet & Mousseau, Vincent A. September 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 67 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The standard two-phase two-fluid model lacks hyperbolicity which results in oscillations in the numerical solutions. For the incompressible two-phase flows an exact correction term can be derived which when added to the momentum equations makes the model hyperbolic. No such straightforward approach exists for the similar compressible flows. In the current work, the effect of the compressibility on the characteristic equation is analyzed. It is shown that the hyperbolicity of the system depends only on the slip velocity and not on the phasic velocities, independently. Moreover, a slip Mach number is defined and a non-dimensional characteristic equation is derived. It is shown that for the small values of slip Mach number the effect of the compressibility on the hyperbolicity can be ignored. To verify the above analysis, the characteristic equation for the two-phase compressible flows is numerically solved and results compared with the values obtained with the analytical solution for incompressible flows. Numerical solution of the two-phase two-fluid model for the benchmark problem is used to further verify the abovementioned analysis. Furthermore, the eigenvalues of the characteristic equation are obtained as a power series expansion about the point where the slip Mach number is zero. These eigenvalues are used to develop a choking criterion for the compressible two-phase flows.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: INL/EXT-08-14878
  • Grant Number: DE-AC07-99ID-13727
  • DOI: 10.2172/944883 | External Link
  • Office of Scientific & Technical Information Report Number: 944883
  • Archival Resource Key: ark:/67531/metadc899829

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 23, 2016, 5:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 67

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Singh, Suneet & Mousseau, Vincent A. Effect of Compressibility on Hyperbolicity and Choke Flow Criterion of the Two-phase Two-fluid Model, report, September 1, 2008; [Idaho Falls, Idaho]. (digital.library.unt.edu/ark:/67531/metadc899829/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.