Incorporation of aqueous reaction kinetics and biodegradation intoTOUGHREACT: Application of a multi-region model to hydrobiogeoChemicaltransport of denitrification and sulfate reduction

PDF Version Also Available for Download.

Description

The need to consider aqueous and sorption kinetics andmicrobiological processes arises in many subsurface problems. Ageneral-rate expression has been implemented into the TOUGHREACTsimulator, which considers multiple mechanisms (pathways) and includesmultiple product, Monod, and inhibition terms. This paper presents aformulation for incorporating kinetic rates among primary species intomass-balance equations. The space discretization used is based on aflexible integral finite difference approach that uses irregular griddingto model bio-geologic structures. A general multi-region model forhydrological transport interacted with microbiological and geochemicalprocesses is proposed. A 1-D reactive transport problem with kineticbiodegradation and sorption was used to test the enhanced simulator,which involves the processes that ... continued below

Creation Information

Xu, Tianfu July 13, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The need to consider aqueous and sorption kinetics andmicrobiological processes arises in many subsurface problems. Ageneral-rate expression has been implemented into the TOUGHREACTsimulator, which considers multiple mechanisms (pathways) and includesmultiple product, Monod, and inhibition terms. This paper presents aformulation for incorporating kinetic rates among primary species intomass-balance equations. The space discretization used is based on aflexible integral finite difference approach that uses irregular griddingto model bio-geologic structures. A general multi-region model forhydrological transport interacted with microbiological and geochemicalprocesses is proposed. A 1-D reactive transport problem with kineticbiodegradation and sorption was used to test the enhanced simulator,which involves the processes that occur when a pulse of water containingNTA (nitrylotriacetate) and cobalt is injected into a column. The currentsimulation results agree very well with those obtained with othersimulators. The applicability of this general multi-region model wasvalidated by results from a published column experiment ofdenitrification and sulfate reduction. The matches with measured nitrateand sulfate concentrations were adjusted with the interficial areabetween mobile hydrological and immobile biological regions. Resultssuggest that TOUGHREACT can not only be a useful interpretative tool forbiogeochemical experiments, but also can produce insight into processesand parameters of microscopic diffusion and their interplay withbiogeochemical reactions. The geometric- and process-based multi-regionmodel may provide a framework for understanding field-scalehydrobiogeochemical heterogeneities and upscaling parameters.

Source

  • Journal Name: Vadose Zone Journal; Journal Volume: 7; Related Information: Journal Publication Date: 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--61086
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 932471
  • Archival Resource Key: ark:/67531/metadc899824

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 13, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 29, 2016, 3:01 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xu, Tianfu. Incorporation of aqueous reaction kinetics and biodegradation intoTOUGHREACT: Application of a multi-region model to hydrobiogeoChemicaltransport of denitrification and sulfate reduction, article, July 13, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc899824/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.