Long-term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China

PDF Version Also Available for Download.

Description

The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere. There are numerous sedimentary basins in China, in which a number of suitable CO{sub 2} geologic reservoirs are potentially available. To identify the multi-phase processes, geochemical changes and mineral alteration, and CO{sub 2} trapping mechanisms after CO{sub 2} injection, reactive geochemical transport simulations using a simple 2D model were performed. Mineralogical composition and water chemistry from a deep saline formation of Songliao Basin were used. Results indicate that different storage forms of CO{sub ... continued below

Creation Information

Zhang, Wei; Li, Yilian; Xu, Tianfu; Cheng, Huilin; Zheng, Yan & Xiong, Peng June 10, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere. There are numerous sedimentary basins in China, in which a number of suitable CO{sub 2} geologic reservoirs are potentially available. To identify the multi-phase processes, geochemical changes and mineral alteration, and CO{sub 2} trapping mechanisms after CO{sub 2} injection, reactive geochemical transport simulations using a simple 2D model were performed. Mineralogical composition and water chemistry from a deep saline formation of Songliao Basin were used. Results indicate that different storage forms of CO{sub 2} vary with time. In the CO{sub 2} injection period, a large amount of CO{sub 2} remains as a free supercritical phase (gas trapping), and the amount dissolved in the formation water (solubility trapping) gradually increases. Later, gas trapping decreases, solubility trapping increases significantly due to migration and diffusion of the CO{sub 2} plume, and the amount trapped by carbonate minerals increases gradually with time. The residual CO{sub 2} gas keeps dissolving into groundwater and precipitating carbonate minerals. For the Songliao Basin sandstone, variations in the reaction rate and abundance of chlorite, and plagioclase composition affect significantly the estimates of mineral alteration and CO{sub 2} storage in different trapping mechanisms. The effect of vertical permeability and residual gas saturation on the overall storage is smaller compared to the geochemical factors. However, they can affect the spatial distribution of the injected CO{sub 2} in the formations. The CO{sub 2} mineral trapping capacity could be in the order of ten kilogram per cubic meter medium for the Songliao Basin sandstone, and may be higher depending on the composition of primary aluminosilicate minerals especially the content of Ca, Mg, and Fe.

Source

  • Journal Name: Greenhouse Gas Control Technologies; Related Information: Journal Publication Date: 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-924E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 948496
  • Archival Resource Key: ark:/67531/metadc899823

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 10, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 30, 2016, 6:47 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zhang, Wei; Li, Yilian; Xu, Tianfu; Cheng, Huilin; Zheng, Yan & Xiong, Peng. Long-term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China, article, June 10, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc899823/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.