Evaluation of Polymer-Filler Interaction Characteristics by Force Microscopy

PDF Version Also Available for Download.

Description

Silicone polymers are frequently used as cushions and inserts between load bearing parts. In this capacity, they must act to position their associated parts and distribute mechanical force as appropriate. One type of failure is specific to silicones that are filled with high surface area particulates for purposes of tailoring the polymer compressive properties. Additives such as fumed silicon oxide are presumed to have a high degree of surface interaction with the polymer matrix, thus causing the polymer to stiffen and to display greater dimensional stability as a function of temperature. However, it has been observed that the compressive behavior ... continued below

Physical Description

PDF-file: 28 pages; size: 1.2 Mbytes

Creation Information

Ratto, T & Saab, A April 23, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Silicone polymers are frequently used as cushions and inserts between load bearing parts. In this capacity, they must act to position their associated parts and distribute mechanical force as appropriate. One type of failure is specific to silicones that are filled with high surface area particulates for purposes of tailoring the polymer compressive properties. Additives such as fumed silicon oxide are presumed to have a high degree of surface interaction with the polymer matrix, thus causing the polymer to stiffen and to display greater dimensional stability as a function of temperature. However, it has been observed that the compressive behavior of these materials is not always invariant over long times. There is evidence that suggests changes in humidity and temperature can irreversibly alter the silicone-filler interaction, thereby changing the overall characteristics of parts made from such materials. As before, changes in compressive or shear stability can have serious effects on the ability of these materials to effectively position precision parts or distribute high mechanical loads. We approach the analysis of the filled systems by creating controlled layers of silicone polymers attached to silicon oxide substrates. Straight chain vinyl-silicone polymers identical to those used in the formulation of pads for stockpile systems are chemically appended to a substrate surface, and cross-linked to form a three dimensional network. This type of structure serves as a model of silicone polymer coating a silicon oxide filler particle. We study these model systems first by using Atomic Force Microscopy (AFM) to image the samples with nanometer resolution, and then by measuring the forces of interactions between single model silica filler particles and polymer-coated surfaces. We use normal longitudinal force AFM to measure adhesion, and a relatively newly developed technique, lateral force AFM, to determine the frictional forces between the silica particles and the polymer films. Lateral force AFM is a sophisticated technique that involves observing the torsional deflections of a cantilever that is scanned across a surface perpendicular to the normal mode deflection. For a carefully calibrated system, this gives information on the dynamic frictional component of the particle/polymer interaction. Both force-measuring techniques utilize colloidal silicon oxide probes ranging from 0.6 {micro}m to 2.0 {micro}m in diameter. These probes replace the standard sharp AFM tip on the cantilever with a spherical bead (Figure 1) and are used to examine interactions between the bead material and the sample surface.

Physical Description

PDF-file: 28 pages; size: 1.2 Mbytes

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-TR-231783
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/920487 | External Link
  • Office of Scientific & Technical Information Report Number: 920487
  • Archival Resource Key: ark:/67531/metadc899821

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 23, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 5, 2016, 3:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ratto, T & Saab, A. Evaluation of Polymer-Filler Interaction Characteristics by Force Microscopy, report, April 23, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc899821/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.