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  I. INTRODUCTION 

 

The Department of Energy Savannah River Site vitrifies nuclear waste incident to defense programs through its Defense 

Waste Processing Facility (DWPF). The piping in the DWPF seal pot jumper configuration must withstand the stresses 

during an unlikely but potential deflagration event, and maintain its safety function for a 20-year service life. [1] Carbon 

fiber-reinforced epoxy composites (CFR) were proposed for protection and reinforcement of piping during such an event. 

The proposed CFR materials have been ASME-approved (Section XI, Code Case N-589-1) [2] for post-construction 

maintenance and is DOT-compliant per 49CFR 192 and 195 .[3,4].  The proposed carbon fiber/epoxy composite 

reinforcement system was originally developed for pipeline rehabilitation and post-construction maintenance in 

petrochemical, refineries, DOT applications and other industries.   

The effects of ionizing radiation on polymers and organic materials have been studied for many years [5-7].  The 

majority of available data are based on traditional exposures to gamma irradiation at high dose rates (~10,000 Gy/hr) 

allowing high total dose within reasonable test periods and general comparison of different materials exposed at such 

conditions.  However, studies in recent years have shown that degradation of many polymers are sensitive to dose rate, with 

more severe degradation often observed at similar or even lower total doses when exposed to lower dose rates.  This behavior 

has been primarily attributed to diffusion-limited oxidation which is minimized during very high dose rate exposures.  Most 

test standards for accelerated aging and nuclear qualification of components acknowledge these limitations.   

The results of testing to determine the radiation resistance and microstructural effects of gamma irradiation exposure on 

a bisphenol-A based epoxy matrix composite reinforced with carbon fibers are presented.    This work provides a foundation 

for a more extensive evaluation of dose rate effects on advanced epoxy reinforced composites.   
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II. EXPERIMENTAL 

 

A combination of mechanical testing, thermal testing, and microstructural analysis were used to determine the effect of 

gamma irradiation on the degradation of the candidate materials.  Experiments were performed on polyacrylonitrile based 

carbon fibers woven into a plain weave cloth.  A two-part epoxy based on bisphenol-A epoxy resin and modified aliphatic 

amine hardener was used to saturate the cloth and provide structural reinforcement and impermeability.  A primer layer 

consisting of a two part epoxy and hardener was applied to the piping to prepare the surface prior to the application of the 

carbon weave and bisphenol-A epoxy resin.  Tensile test bars of carbon fiber/epoxy matrix composite nominally 20 x 2 x 

0.15 cm were used for the mechanical testing.  Gamma radiation exposure conditions are given in Table I.   

Target radiation doses of 0.5, 1.0, and 2.0 MGy were selected to meet typical nuclear qualification doses and to bound 

the 20-year service dose expected in DWPF.  In addition, the piping will be exposed to a bounding dose rate of 5 Gy/hr 

leading to an annual total dose of 0.044 MGy and a 20-year service dose of 0.88 MGy.  The tensile bars were also irradiated 

to total doses of 0.5, 1.0, and 2.0 MGy, typical of testing used to qualify electric motors, cables and related equipment in 

commercial nuclear service [8-10]. Exposures and experiments were performed in duplicate.   
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Six irradiated composite bars and three baseline bars were tensile tested in a universal testing machine (Sintech 1125).   

Sample bars were loaded in a swivel upper grip with a 10 cm grip separation.  A load cell of 88,900 N was used with a 

crosshead speed of 0.127 cm/min.  Each bar was tested until failure by fracture.   The ASTM D7205 [11] standard for testing 

fiber-reinforced epoxy composites was used due to limitations on sample availability and geometry.  The samples were 

visually examined and photographed to determine any macroscopic property changes.  Scanning electron microscopy was 

used to examine fracture surfaces and determine any microstructural or fracture mode changes after gamma irradiation. 

Differential scanning calorimetry (DSC) was performed on epoxy resin from the baseline and 2.0  MGy tensile bars to 

determine structure/property relationships in polymers and to identify thermal transitions and possible modes of degradation.  

Specimens weighing 5 mg were used for the measurements, referenced by an aluminum pan of approximately equal weight.  

The heating rate was set at 10 ºC/min.  A flow of 30 ccm Ar was used. Three consecutive runs were performed for each 

sample from 30 to 150 ºC.   

Fourier transform infrared spectroscopy analysis was performed on composite bars of baseline, 0.5, and 1.0 and 2.0 MGy 

samples to provide a “fingerprint” of organic and polymeric materials.  The material was analyzed by the attenuate total 

reflection (ATR) method. Each sample was analyzed in duplicate.  Spectra were obtained using a Nicolet 210 FTIR 

instrument, employing a Michelson interferometer with a KBr beamsplitter to accomplish frequency discrimination.  The 

spectral resolution of the instrument was nominally 20 mm-1.  Background scans were obtained prior to sample scanning, and 

improvement in the signal to noise ratio was obtained by averaging multiple interferograms for background and sample 

spectrum. 
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III. RESULTS AND DISCUSSION 

 

IIIA. Tensile Test Results 

A comparison of the tensile properties of the materials exposed to the various radiation doses showed minimal difference 

in tensile behavior with the exception of the 2.0 MGy tests in which the curve showed evidence of slipping during testing as 

shown in Figure 1.  The strain at failure and moduli values taken from the stress/strain curves are given in Table II.  Both bars 

exposed to 2.0 MGy had initial fiber failures at 396 MPa associated with slip in the stress-strain curves.  The percent 

elongation to failure held constant between 1.2 and 1.4% for all irradiation levels.   

 

IIIB. Tensile Fracture Surfaces 

Photographs of the fracture surfaces of the tensile bars are shown in Figures 2-5.  The tensile bars before exposure to 

radiation were shades of gray in color with some lighter patches most likely due to the presence of excess cured resin as 

shown in Fig. 2a.  The baseline tensile samples fractured approximately perpendicular to the length of the tensile bar.  Further 

visual examination revealed visible protruding fibers as shown in Figs. 2b, c and d.  Minimal evidence of delamination 

between the resin and carbon fibers is visible.    

 

The resin underwent a color change from clear/transparent to light yellow after exposure to a gamma radiation dose of 

5.0  MGy, typical of polymers exposed to gamma irradiation, Fig. 3. [12]  The fractures were nominally perpendicular to the 

tensile stress (length of the bar).  Visual examination revealed that damage due to fracture was primarily limited to the 

fracture area.  Similar to Fig. 2, protruding fibers were found at the minimal delamination or other damage exists was found 

outside the fracture area. 

 

The resin showed an increased color change with a visibly darkened yellow color, after exposure to total 1.0 MGy 

gamma dose as shown in Figure 4.  The tensile bars fractured with visible damage primarily contained within the fracture 

area as shown in Figure 4a.  Similar to the baseline and 5.0 MGy samples, protruding fibers are visible at the fracture site 

shown in Figs. 4 b and c.  Visible delamination exists at the fracture site, with minimal damage extending beyond the fracture 

area as shown in Figure 4d.   
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At the higher dose of 2.0 MGy, the resin underwent a significant color change with a visible dark yellow color as shown 

in Figure 5.   Damage extends along the length of the tensile bar and is not confined to the fracture site, Figure 5a.  In 

addition to color changes, pockets of resin are missing at the interface between carbon fiber woven points, Figure 5b.  This 

damage extends several centimeters from the fracture site down the length of the tensile sample.  Noticeable volume of resin 

is also absent from the interior of the tensile bars, Figure 5d.   

IIIC. Scanning Electron Microscopy 

Scanning electron micrographs of the fracture surfaces of the tensile bars are shown in Figures 6-10.  The virgin 

composite exhibited significant amounts of interfacial failure.  Fiber pullout found in the baseline samples contained minimal 

polymer debris, Figure 6, suggesting failure at the interface of the fibers and the epoxy.  The epoxy matrix exhibited a 

dimpled fracture surface suggestive of ductile fracture.     

After 0.5 MGy of gamma radiation, minimal debris on fibers suggest interfacial failure as the primary failure 

mechanism, however, the fracture mode of the epoxy has undergone a transformation to a more brittle fracture, evidenced by 

the facets on the fracture surfaces as shown in Figure 7.   

 

At radiation doses of 1.0 MGy, Figure 8, significant amounts of polymer debris are present on the carbon fibers, with limited 

evidence of interfacial failure.  The primary failure mechanism is through the epoxy rather than along the interface of the 

carbon fibers and epoxy.  The fracture surface of the epoxy is increasingly brittle in nature.   

 

At radiation doses of 2.0 MGy, the integrity of the composite is substantially diminished.  Significant epoxy debris remains 

on carbon fibers and numerous cracks run through the epoxy core, Figure 9.  

 

As further evidence of increased degradation after a 2.0 MGy gamma irradiation, several bulges covered in cracks have 

formed on the irradiated sample.  These are possibly due to the release of gases from the epoxy upon radiation decomposition 

or a post-cure phenomenon.  Off-gassing of polymers during radiation exposure is expected.  Additional images of radiation 

damage are shown in Figure 10, depicting the macroscopic disconnect between sections of epoxy on the carbon fiber weave.  

Macrocracks form at the interface of carbon fiber bundles as well as along the length of the carbon fiber bundles.  The crack 

formation suggests the epoxy has lost significant reinforcing properties.  
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IIID. Differential Scanning Calorimetry (DSC) 

Figure 11 shows the results for the baseline and 2.0 MGy samples, respectively.  The DSC curves from the baseline and 

2.0 MGy resin are clearly different.  The first DSC run for both baseline and 2.0 MGy removed the thermal history by 

heating to 150 ºC.  The second and third runs are used to determine the Tg (glass transition temperature) value of the material, 

with the third run performed to show repeatability.  The glass transition temperature of polymers is a critical parameter for 

thermal stability.  Per ASME PCC-2, the Tg value of the product should be 20 ºC higher than the service temperature or the 

substrate temperature during the repair.  The downward slope in the DSC baseline curve starting at ~60 ºC is the onset of the 

glass transition.  The Tg can be estimated as ~72 ºC and 84 ºC for the baseline and 2.0 MGy samples, respectively, see Figure 

11.  From these data, the Tg of the epoxy has apparently shifted approximately 10 ºC due to irradiation.  A slight increase in 

the Tg value alone does not always indicate severe degradation.  However, in combination with mechanical test results and 

microscopic examination, this increase is consistent with resin degradation. 

 

III E. Fourier Transform Infrared (FT-IR) Spectroscopy 

The FT-IR spectrum contained peaks consistent with the presence of a bisphenol-A-based epoxy resin, see Figure 12.  

Changes were observed with increasing dose in the carbonyl region near 1700 cm-1 indicating oxidation.  

 

III. F. Hardness Testing 

Hardness testing was performed as a standard epoxy characterization method.  Rockwell M scale 6.35 mm diameter ball 

indenter with 10 kg minor load, and 100 kg major load was used per ASTM D785-03 [13]. The hardness results of the epoxy 

and composite can be found in Tables III and IV, respectively.  

 

The hardness values for the epoxy change considerably compared to the hardness values of the composite, adding further 

evidence that the epoxy was affected by the radiation, while the carbon fibers were unaffected as the total composite hardness 

is heavily influenced by the properties of the carbon fiber. 

 

II. CONCLUSIONS 

      Mechanical and thermal testing followed by microstructural analysis was performed on candidate epoxy-reinforced 

composite materials to determine the gamma radiation effects on their functionality for use in the DWPF. The mechanical 
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testing revealed no substantial trends from the modulus or strain at failure data, although the microstructural orientation 

effects were not accounted for. The reliability and accuracy of the stress/strain curves is unknown due to the highly 

directional nature of the fiber composite.  Even with the use of a pivot cross-head, a fraction of a degree difference in 

alignment of sample during the tensile testing can dramatically change the results.  However, stress/strain curves from 

samples exposed to high radiation doses do show erratic behavior, particularly at strains of ~0.015 and above, suggesting the 

failure mechanism is different for highly irradiated samples and should not be discounted.   

 

Gamma radiation doses up to 2.0 MGy do not affect the carbon fibers significantly.  The damage threshold dose for the 

epoxy used in the composite is unknown, but the resin appears to be slightly degraded at a dose of 0.5 MGy, with increased 

changes at higher doses.  At 0.5 MGy, the epoxy fracture surface shows signs of less ductility. The failure mechanism 

associated with the composite failure, however, remains interfacial failure.  Therefore, the strength of the irradiated epoxy is 

still stronger than the bond between the fibers and epoxy.  At 1.0 MGy, the epoxy fracture mechanism becomes increasingly 

brittle.  At this dose, the overall failure mechanism appears to have changed from interfacial failure to failure of the epoxy 

based on the significant amount of epoxy lining the carbon fibers.  The exact transition dose is unknown.   

 

At 2.0 MGy, the epoxy degrades in strength dramatically.  It is evident from fracture surface examination and visual 

observation that the epoxy has undergone a transformation and significant amounts of resin are lost due to crumbling and 

falling off the composite weave from the degradation. 

 

From these limited results, composite appears to be resistant to a dose of 0.5 MGy and should function similarly to non-

irradiated material.  Effects on properties and interfacial behavior are more significant for samples irradiated to doses of 1.0 

MGy or higher.   Based on the limited testing performed, performance of the material with regard to pipe repair (pressure 

retention, leak integrity, etc.) under specific conditions cannot be determined.  Correlation of quasi-static mechanical 

properties to performance under more dynamic conditions (major pressure change or deflagration event) in combination with 

radiation exposure is difficult and must be given additional consideration.   

 

These tests only provide relative indications of radiation resistance.  In low pressure/temperature applications and those 

not subject to significant thermal changes or vibration, doses higher than 0.5 – 1.0 MGy are likely tolerable.  However, 
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additional testing is needed to qualify the product for particular applications.  For service life prediction, samples should also 

be irradiated to similar doses at much lower dose rates to evaluate dose rate effects.  

 

For higher dose applications, alternative epoxy resins, such as bisphenol-F or novolac epoxies, with higher functionality 

and degree of cross-linking may also be needed.  Resin selection must balance all needed properties such as adhesion, fiber 

wetting, viscosity, thermal stability, chemical resistance and other properties as well as radiation tolerance.  
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Figure Captions 

Figure 1. Stress strain curves of representative of composite bars irradiated to doses of 0, 5.0 x 105, 1.0 x 106, and 2.0 x 106 

Gy  

Figure 2. Baseline fracture tensile test bars (a), fractured surface with protruding carbon fibers (b) and (c), minimal evidence 

of delamination are visible adjacent to the fracture region (d). 

Figure 3 Fractured tensile test bars after 5.0 x 105 Gy (a), fractured surface with protruding carbon fibers with slight evidence 

of delamination on the surface of adjacent area to the fractures surface (b), minimal evidence of delamination (c). The resin 

has developed a slight yellow color visible in delamination areas (d). 

Figure 4 Fractured tensile test bars exposed to 1.0 x 106 Gy (a), fractured surface with minimal protruding carbon fibers (b), 

increased surface delamination adjacent to the fracture area with a darker yellow color (c),  increased delamination along 

the length of the bar (d). 

Figure 5 Fractured tensile test bars exposed to 2.0 x 106 Gy (a), fractured surface with protruding carbon fibers and a visible 

deep yellow color (b), void formation is visible at the adjacent to the fracture surface (c), significant delamination 

throughout the core of the bar (d). 

Figure 6 Baseline tensile bar with carbon fibers with small amount of resin debris (left), fractured resin surface at failure site. 

Fractured surface contains evidence of fracture with a significant degree of ductility (right). 

Figure 7. Tensile bar subjected to 5.0 x 105 Gy gamma radiation with carbon fibers with small amount of resin debris (left), 

fractured resin surface at failure site.  Fractured surface suggests a fracture with a smaller degree of ductility compared to 

baseline samples shown in Figure 5 (right). 

Figure 8. Tensile bar subjected to 1.0 x 106 Gy gamma radiation with carbon fibers coated with substantial amount of resin 

(left).  The fracture surface of the resin is mostly brittle in nature (right). 

Figure 9. Tensile bar subjected to 2.0 x 106 Gy gamma radiation with carbon fibers coated with substantial amount of resin 

(left).  Numerous fractures are present within the resin parallel to the length of the fibers (right). 

Figure 10 Epoxy surface on tensile bar subjected to 2.0 x 106 Gy gamma radiation 

Figure 11 DSC curves of baseline resin and 2.0 x 106 Gy irradiated resin. 

Figure 12 Bisphenol A epoxy resin – duplicate analyses of the irradiated and control samples.  Vertical line depicts region 

associated with oxidation upon irradiation. 
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Tables 

 

TABLE 1. Radiation Exposure Conditions 

Dose/Condition Dose Rate Irradiation Time 
0 n/a n/a 

0.5 MGy 5.0 x 103 Gy/hr 100 hours 
1.0 MGy 5 .0x 103 Gy/hr 200 hours 
2.0 MGy 5.0 x 103 Gy/hr 400 hours 
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TABLE II: Moduli of Tensile Test Bars 

Bar # Dose 
(Gy) 

Modulus 
(GPa) 

Strain 
at 

Failure 

Fracture 
Stress 
(MPa) 

13 0 56.7 0.014 761 
15 0 59.6 0.013 772 
16 5 x 105 47.5 0.012 597 
17 5 x 105 46.4 0.014 616 
18 1 x 106 54.1 0.014 761 
19 1 x 106 59.2 0.014 812 
20 2 x 106 55.3 0.013 599 
21 2 x 106 45.8 0.013 565 
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TABLE III.  Hardness values for epoxy irradiated at 1.0 x 106 Gy 

Unirradiated Irradiated 
44.4 70.6 
50.3 71.8 
49.2 72.5 
49.5 72.0 
40.1 71.9 
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TABLE IV. Hardness values for composite 

Condition Test #1 Test #2 Test #3 
0 102.1 103.3 102.3 

5.0 x 105 Gy 100.3 98.9 101.8 
1.0 x 106 Gy 106.1 101.5 104.2 
2.0 x 106 Gy 105.4 100.9 107.4 
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Figures and Tables 
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Figure 3
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Figure 5
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Figure 11 
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Figure 12
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