SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

PDF Version Also Available for Download.

Description

The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and ... continued below

Creation Information

Hathcock, D October 30, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

Notes

available

Source

  • NACE Corrosion 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-STI-2007-00627
  • Grant Number: DE-AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 921676
  • Archival Resource Key: ark:/67531/metadc899652

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 30, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 12, 2016, 1:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hathcock, D. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION, article, October 30, 2007; [Aiken, South Carolina]. (digital.library.unt.edu/ark:/67531/metadc899652/: accessed September 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.