Flash X-Ray Diffraction System for Ultrafast Temperature and Phase Transition Measurements

PDF Version Also Available for Download.

Description

A novel ultrafast diagnostic for determining bulk temperature and phase transitions for polycrystalline metal objects has been developed. The diagnostic consists of a 38-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71 Å monochromatic X rays, and a P-43 fluor coupled to a cooled charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1° divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm diameter molybdenum anode. The X-ray diode, in a needle-and-washer configuration, is ... continued below

Physical Description

240

Creation Information

Dane Morgan, Don Macy, Michael Madlener, Jaiming Morgan June 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A novel ultrafast diagnostic for determining bulk temperature and phase transitions for polycrystalline metal objects has been developed. The diagnostic consists of a 38-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71 Å monochromatic X rays, and a P-43 fluor coupled to a cooled charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1° divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm diameter molybdenum anode. The X-ray diode, in a needle-and-washer configuration, is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, which allows the X rays to be produced inside a vacuum containment vessel, close to the sample under study. The direct correlation between the solid-state structure and the coherent X-ray diffraction pattern from a metal surface allows an unequivocal determination of a phase transition. This correlation has been tested in the laboratory with samples of indium and tin. For both metals, diffraction lines were observed at temperatures just below the melt temperature, along with background consisting of Compton scattering and sample fluorescence. Upon melt, the diffraction lines were observed to disappear; however, the background from Compton scattering and sample fluorescence remained. Flash X-ray diffraction also enables direct ultrafast measurements of the bulk temperature of the sample under study. According to the Debye-Waller theory, the diffracted line intensity reduces as the temperature of the sample increases. The amplitude of the reduced diffracted signal also depends on the Debye temperature of the sample, the scattering angle of the diffracted X rays, and the X-ray wavelength. The feasibility of using the Debye-Waller theory for flash X-ray diffraction measurements of the bulk temperature is currently being studied.

Physical Description

240

Source

  • Journal Name: Plasma Science, 2007. ICOPS 2007. IEEE 34th International Conference on; Conference: 2007 IEEE Pulsed Power and Plasma Science Conference; Albuquerque, New Mexico; June 17-22, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: DOE/NV/25946--109
  • Grant Number: DE-AC52-06NA25946
  • DOI: 10.1109/PPPS.2007.4345546 | External Link
  • Office of Scientific & Technical Information Report Number: 946312
  • Archival Resource Key: ark:/67531/metadc899647

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 16, 2016, 12:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dane Morgan, Don Macy, Michael Madlener, Jaiming Morgan. Flash X-Ray Diffraction System for Ultrafast Temperature and Phase Transition Measurements, article, June 1, 2007; (digital.library.unt.edu/ark:/67531/metadc899647/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.