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Abstract 
The deprotectioii blur of Rohm and Haas XP 5435, XP 5271, and XP 5496 extreme ultraviolet 

photoresists has been determined as their base weight percent is varied. We have also determined 

the deprotection blur of TOK EUVR P1123 photoresist as the post-exposure bake temperature is 

varied from 80 "C to 120 "C. In Rohin and Haas XP 5435 and XP 5271 resists 7x and 3x (respective) 

increases iii base weight percent reduce the size of successfully patterned 1:l line-space features by 

16 nm and 8 nm with corresponding reductions in deprotection blur of 7 nm and 4 nm. In XP 

5496 a 7x increase in base weight percent reduces the size of successfully patterned 1:l line-space 

features from 48 nin to 38 nm without changing deprotectioii blur. In TOK EUVR P1123 resist, a 

reduction in post-exposure bake temperature from 100 "C to 80 "C reduces deprotection blur from 

21 iini to 10 iiin and reduces patterned LER from 4.8 iim to 4.1 nm. 

PACS iiuinbers: 

*Electroiiic address: cnandersonQberkeley . edu 
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I. INTRODUCTION 

Resists and processing procedures for extreme ultraviolet (EUV) lithography (A = 13.5 

nin) are continuously being optimized for the 22 nm manufacturing node. In many ways, 

however, we still do not have a good understanding of EUV photoresists. Much of the 

difficulty is that  we typically judge resist performance based on the final printed wafer, 

which of course is a product of the entire coating, exposure, and development process. 

Dccorivolving the cffccts of the resist, moreover the effects from different constitucrits within 

the resist, is often a difficult task. 

Over the past four years many metrics have been developed to benchmark resist perfor- 

inance in a variety of areas. One parameter that  has received a lot of recent attention is 

intrinsic resolution (or deprotection blur) as it represents a fundamental limitation in pat- 

terning ability. A variety of approaches have been developed to  measure deprotection blur in 

EUV resists: iso-focal bias [l] , line-edge roughness (LER) correlation length [a], modulation 

transfer function (MTF) [3, 41, corner rounding [6, 71, and through-dose contact-hole printing 

[5-81. The MTF, corner rounding, and contact-hole inetrics have all repeatedly shown con- 

sistency with direct observation [6, 91, however the contact-hole metric has several properties 

that  currently nialie i t  attractive for large-scale resist coinparisons [8]. 

At the prcscrit tirric it is still uriclcar how rcsist dcprotcction blur influences patterning 

ability and other observable printing characteristics. Several authors have reported that 

increased levels of base and photo acid generator (PAG) in EUV resists lead to  improved 

LER and patterning ability [lo-121. In recent work [12], the contact-hole metric was used 

to  inonitor the deprotection blur in an experiinental open platforin resist (EH27 [13]) as the 

weight percent of base and PAG were varied. No significant change in deprotection blur was 

observed despite observing perforinance improvements with increased base/PAG. I t  is well 

known, however, that  increasing base in EUV photoresist requires higher doses to  print the 

same size features. Consequently, performance iinprovements with increased base are often 

attributed to improved photon statistics [lo,  111. Here we will examine three Rohm and 

Haas rcsists, monitoring printing fidelity and dcprotcction blur as base is varied to  provide 

additional data  on this unsolved issue. 

Another process parameter that  has been discussed in the literature, in relation to  print- 

ing performance and deprotection blur, is the post-exposure bake (PEB) temperature [9]. 
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Previous work has shown at EUV wavelengths that  the critical dimension (CD) of resist 

patterns remaining after development can be sensitive to  small changes in PEB temperature 

[14]. More recent work has shown that  several performance metrics, including exposure 

latitude, resist contrast, RELS [15] and intrinsic blur (measured with the MTF metric) are 

sensitive to  PEB temperature in Rohm and Haas XP 6305A resist [9] . In this report we will 

monitor the printing fidelity and deprotection blur of TOE( EUVR P1123 photoresist as the 

PEB temperature is varied while keeping track of LER, patterning ability, and dose-to-size. 

11. THE CONTACT-HOLE BLUR METRIC 

The contact-hole metric has been described in detail in the literature [7, 81 and is only 

summarized here. The metric involves capturing scanning electron microscope (SEM) im- 

ages of contact-holes through dose at best focus in the focus-exposure-matrix (FEM) and 

measuring their average printed diameter (PD) at each dose. Experimental P D  vs. dose 

data  is then compared to  modeled P D  vs. dose da ta  generated using the HOST point-spread 

function resist blur model [ 161. Deprot,ection blur is determined by finding the programmed 

blur that  minimizes the mean-squared-error between the modeled and experimental PD vs. 

dose data.  

As with most PSF-based resolution metrics, the contact-hole metric requires the ability 

to  accurately model the aerial images that create the experimental printing data. In prac- 

tice, uncertainties in exposure tool aberrations and focus place constraints on the accuracy 

to  which this can be done. The sensitivity of the contact-hole metric to  limitations in aerial 

image modeling has been previously characterized at the SEMATECH Berkeley MET print- 

ing facility [ 171 assuming 0.15 nin RMS errors in interferometrically measured aberrations 

[18] and assuming 50 nin focus steps in the FEM [7]. The aerial-image-limited error bars in 

extracted deprotection blur for the contact-hole metric were reported at 1.25 nm RMS. 

Several other error sources associated with the contact metric have been identified and 

aiialyzed in previous work [8]. The error bars from these sources have been shown to  be 

the same order as the error-bars due to  limitatioiis in aerial image modeling. In addition, 

a reproducibility experiment has shown that the full-proces error bars for the contact-hole 

metric are within the 1.75 nin quadrature addition of the reported experimental and mod- 

eling error-bars [8]. 
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111. EXPERIMENT AND RESULTS 

A. Resists 

Through-base resist series' were provided Rohm and Haas and are based on the XP  5435, 

XP  5271, and X P  5496 resist platforms. Table I suinmarizes the resist thickness, post- 

application bake (PAB) , post-exposure bake (PEB) , and development parameters for each 

resist platform; these remain fixed for all base weight pcrcents within a particular platform; 

all process parameters were recommended by the resist supplier. The capital letters next 

to  the Rohin and Haas resists are used to label the relative base weight percents of 0.3, 

0.5, 1.0, and 2.0 in each platform; XP  5435 has an additional base level of 4.0 (XP 5435H) 

[? 1 .  Table I also shows the process parameters for the TOK EUVR P1123 resist used in 

the PEB temperature study. It is uiiderstood that  the PEB temperature is varied from the 

supplier-recoininended 90 "C temperature while all other paramet,ers were fixed. Four inch 

HMDS-primed wafers were used for all experiments and all wafers were developed using a 

single puddle of Rohm aiid Haas MF26A developer. 

B. Exposures 

Exposures were performed a t  the 0.3 numerical aperture SEMATECH Berkeley microfield 

exposure tool printing facility a t  the Advanced Light Source at Lawrence Berkeley National 

Laboratory using coiiveiitional CJ = 0.35 - 0.55 aniiular illumination [17]. Line-space and 

contact-hole data  were printed using the LBNL 5,2 dark field and LBNL 7,2 dark field niasks, 

respectively. Contact features for the resolution metric were coded to print with a 50 nm 

diameter and 125 nin pitch (1:1.5 duty cycle). For the deteriniiiatioii of patterned LER and 

intrinsic LER and we use dark-field 1:l line space patterns with 50 nm half-pitch and 100 

nin half-pitch, respectively. 

C. Metrology 

SEM aiialysis was performed at LBNL on a Hitachi $4800 with a working distaiice of 

2 inm and an  acceleration voltage of 2.0 kV. All line-space and contact-hole data  were 

characterized using offline a,nalysis software [ 191. LER data for line-space patterning is 
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obtained using a 3x3 dose-focus process window around the center-dose center-focus site 

in the FEM. In this report we measure two different size line-space patterns: 50 nm half- 

pitch and 100 nm half-pitch. For 100 nm 1:l features the SEM magnification is set to lOOk 

providing 6 patterned lines in each SEM image. The reported LER magnitude is the average 

of the 54 single-line LER values in the process window and the reported LER uncertainty 

is the 30 standard deviation of the 54 single-line LER values divided by the square root of 

the number of lines in the process window. For 50 nm features the SEM magnification is 

set to  1501~ providing 8 patterned lines per SEM image and 72 lines in the process window. 

The spatial frequency spectrum of a single-line LER nieasurcrricrit is confined to  a passband 

with a minimum period of 10 nm (just, above the noise floor) and a maximum period of 834 

nm (the height of the SEM image). 

P D  values used for the extraction of deprotectioii blur with the contact metric are the 

average P D  of 25 central contacts printed in an 8x8 array. All contact metric error sources 

identified in previous work have been minimized by adhering to  suggested process guidelines 

[8]: all SEW1 images are well focused, with emission current' fixed throughout each through- 

dose set; SEM electron beam dosing is avoided by focusing in on a local contact site and 

shifting the field by 1 pin just before image capture; SEM images are gathered by the same 

person; all P D  measuremeiits are made at the same threshold level (0.5) in the image analysis 

software. 

D. Base loading results 

Figurc 1 shows SEM images of bright field 1:l lilies a t  best focus printed in Rohm and 

Haas X P  5435 resist with different base weight percents shown at the left of each row. 

Figure 2 shows the corresponding da ta  for the X P  5496 platform; line-space printing data 

for XP  5271 is not shown however it follows similar patterning behavior through base as the 

presented data.  The measured deprotection blurs of the XP 5435, X P  5496, and XP  5271 

platforms, through base, as well as other performance metrics, are summarized in Table 

11. We also include previously reported base loading data  for EH27 resist for completeness 

[la].  Through base, the XP  5435 and XP  5271 platforms experience marginal reductions 

in deprotection blur while the XP  5496 and EH27 platforms see no statistically significant 

change in blur. The deprotection blur of XP  5435F is missing because we never exposed 
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contacts for this resist. 

E. PEB results 

Figure 3 shows SEM images of bright field 1:l lines printed through pitch in TOE( EUVR 

P1123 resist for PEB temperatures of 80, 90, 100, and 120 "C. Upon direct inspection of 

the SEN1 images, there are some subtle changes in printing performaiice between the 80 and 

100 "C PEB temperatures. Most noticeable by eye is that  the semi-isolated (outer) lines 

start  to  merge at sinaller pitches and eventually fuse as the PEB temperature is increased; 

LER improvements with decreasing P E B  are marginal (see inset in Figure 3). At the 120 

"C P E B  temperature the semi-isolated lines completely clear at the largest feature size (45 

rim) arid there is a significant LER increase over the 100 "C LER in the smaller features. 

Figure 4 shows SEM images of the contact wafer that  we printed for blur extraction at the 

130 "C PEB temperature. We observed partial lift-off that  increased with dose (subfigures 

a - b) that  led to  complete lift-off (subfigures c - d) .  Due to  this drastic change in printing 

behavior we omitted the 130 "C PEB temperature for line-space data.  

The deprotectioii blurs for TOE( EUVR P1123 at each PEB temperature, as well as other 

performaiice metrics, are summarized near the bottom of Table 11. Each PEB experiment 

was performed at least twice to  test reproducibility aiid the results of each independent blur 

measurement are summarized in Figure 5. Within the 80-100 "C P E B  temperature range, 

the extracted deprotectioii blur for repeated trials stays within the reported 1.75 iim RMS 

error bars of the contact-hole metric [8]. With the exception of the of the 120 "C PEB 

temperature deprotection blur increases with increased PEB. The blurs at the 120 " PEB 

temperature, however, differ by more than the reported error bar [8] so i t  is likely that at 

120 "C were observing the onset of the transition mechanism that  shows up at the 130 " 
PEB temperature. 

IV. DISCUSSION 

In Rohm and Haas XP  5435 and XP  5271 resists 7x aiid 3x (respective) increases in base 

weight percent reduce the size of successfully patterned 1:l line-space features by 16 nm and 

8 nm with 7 nm and 4 nm reductions in deprotection blur. Given the factor of two difference 
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between changes in patterning ability and changes in deprotection blur through base, i t  is 

unlikely that  blur reduction is the underlying mechanism behind improved performance 

through base in these resists. In support of this conclusion, a 7x increase in base weight 

percent in Rohin and Haas XP  5496 resist reduces the size of successfully patterned 1: l  line- 

space features from 48 nm to 38 nm while leaving deprotection blur more-or-less unaffected. 

As has been reported in the past [ 10-121, we observed that increasing the level of base in a 

given resist increases the dose required for features to  print at their coded sizes. I t  is natural 

to  speculate that  improved performance with increased base, correlated to  increased doses, 

is indicative of reduced shot noise. This topic is currently under debate in the literature 

[lo, 121 and we will not discuss i t  here. 

The results of the PEB study agree with the trends presented in previous work [9]. 

In general, reductions in PEB temperature provide marginal improvements in LER and 

patterning fidelity a t  smaller pitches for a tradeoff of reduced sensitivity. When patterning 

larger (>50 nm) feature sizes, changes in patterning fidelity through PEB temperature are 

difficult to  resolve in top-down SEM images. It is likely that patterning fidelity in larger 

features also improves with lower PEB temperatures, however we did not obtain the cross 

sectional data  that would be required verify this claim. As the PEB temperatures approach 

the glass transition, resist, performance suffers. At the 120 "C PEB temperature the iso- 

dense bias increases to  the point that  the outer lines fuse/clear even though the inner lines 

can still support the 30 nm 1:l structure. At the 130 "C PEB temperature liftoff dominates 

all other failure mechanisms and the majority of the features on the mask cannot print. 

V. CONCLUSION 

It  is unlikely that reduced deprotection blur is the mechanism causing improved pattern- 

ing and reduced intrinsic LER in EUV resists as base weight percent is increased. Of four 

resists studied, two showed changes in deprotection blur through base, however, the changes 

in blur were not large enough to account for observed patterning improvements. None of 

the resists we have studied perform at the resolution limit as determined by deprotection 

blur; this suggests that  other mechanisms are currently dominating patterning. Reduced 

P E B  temperatures can provide marginal improvements in printing performance for features 

pushing the limits of the resist at the cost of reduced photospeed. 
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50 nm 45 nm 40 nm 38 nm 36 nm 

FIG. 1: Base loading study. Through-pitch SEM images of bright field 1:l lines printed in Rohm 

and Haas XP 5435 resist. Relative base weight percents are indicated to the left of' each row. 

Half-pitch coded feature sizes are indicated at the bottom of each column. LER information for 

each SEM image is indicated in the table; note that these LER values are not the same as the 

process-wiiidow-averaged LER values reported in Table 11. 
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50 nm 45 nm 40 nm 38 nm 36 nm 

FIG. 2: Base loading study. Through-pitch SEM images of bright field 1:l lines printed in Rohm 

and Haas XP 5496 resist. Relative base weight percents are indicated to the left of each row. 

Half-pitch coded feature sizes are indicated at the bottom of each column. LER information for 

each SEM image is indicated in the table; note that these LER values are not the same as the 

process-window-averaged LER values reported in Table 11. 
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FIG. 3: Post exposure bake (PEB) temperature study. Through-pitch SEkI images of bright field 

1:l lines printed in TOK EUVR P1123 resist with PEB temperatures of 80, 90, 100 and 120 "C.  

The bake time is 90 seconds for all temperatures. Half-pitch coded feature sizes are indicated at 

the bottom of each column. LER information for each SEM image is indicated in the table; note 

that these LER values are not the same as the process-window-averaged LER values reported in 

Table I1 
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.. . il_.........-- -. 

FIG. 4: Post exposure bake (PEB) temperature study. Subfigures a through c are SEM images of 

a coded 500 nm elbow printed in TOK EUVR P1123 resist with a 130 "C / 90 second PEB with 

relative dose steps of 1.15 between each image; d is a zoomed out version of c where the field shown 

in c is outlined in white. 
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FIG. 5: Post exposure bake (PEB) temperature study. Measured deprotection blur of TOK P1123 

resist with PEB temperatures of 80, 90, 100 and 120 "C. Each experiment was performed at least 

twice to test reproducibility. 

TABLE I: Process parameters for reference resist formulations. 

Supplier Resist, Thickness (nm) PA13 ("C) PEB ("C) PEB (sec) Dev. time (sec) 

Rohm and Haas XP 5435 E,F,D,G,H 120 130 130 90 45 

R.ohm aiid Haas XP 5271 J,K,D,L 80 130 120 90 45 

R.ohm aiid Haas XP 5496 H,I,F,J 80 130 90 90 45 

TOK EUVR P1123 60 120 80, 90, 100, 120, 130 90 60 
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TABLE 11: EUV resist performance metrics 

Base % Blur Pattern limit LER (nm) LER (nm) E-size 

(relative) (nm) (nm 1:l) 
Resist 

50 nm 1:l 100 nm 1:l (mJ/cm2) 

XP 5435-E 0.3 32.1 52 10.7 f 0.6 6.5 f 0.1 1.6 

XP 5435-F 0.5 N/A 50 8.2 f 0.4 5.8 f 0.1 2.3 

XP 5435-D 1.0 31.3 42 6.1 f 0.3 5.7 f 0.2 3.2 

XP 5435-G 2.0 26.2 40 5.5 f 0.3 4.6 f 0.1 6.4 

XP 5435-H 4.0 25.1 36 5.0 f 0.3 4.0 f 0.1 14.0 

XP 5271-J 0.3 27.9 47 13.4 f 0.8 8.0 f 0.2 4.0 

XP 5271-K 0.5 25.4 43 6.7 f 0.3 5.3 f 0.1 6.5 

XP 5271-D 1.0 23.8 39 6.7 f 0.2 5.2 f 0.1 12.5 

XP 5496-H 0.3 26.5 48 8.1 f 0.3 7.6 f 0.1 3.0 

XP 5496-1 0.5 26.4 44 7.9 f 0.3 6.9 f 0.1 4.7 

XP 5496-F 1.0 24.6 38 6.5 f 0.3 5.8 f 0.1 7.6 

XP 5496-5 2.0 25.0 38 5.3 f 0.3 5.0 f 0.1 15.2 

EH27-C 0.3 17.0 52 13.4 f 0.7 6.9 f 0.1 1.9 

EH27-D 0.7 17.3 47 8.8 f 0.4 5.8 f 0.1 3.2 

EH27-E 1.0 16.7 43 6.8 f 0.2 4.9 f 0.1 6.4 

EH27-F 1.5 15.0 42 5.3 f 0.1 4.9 f 0.1 7.8 

EH27-G 2.0 17.1 39 4.5 f 0.1 4.1 f 0.1 10.7 

P1123 (80" PEB) 1.0 9.7 28 4.3 f 0.1 4.0 f 0.1 11.9 

P1123 (90" PEB) 1.0 13.5 28 4.5 f 0.1 4.0 f 0.1 8.8 

P1123 (100" PEB) 1.0 21.1 30 4.8 f 0.1 4.1 f 0.1 8.2 

P1123 (120" PEB) 1.0 18.3 30 4.8 f 0.1 N/A 6.8 
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