A stable finite difference method for the elastic wave equation on complex geometries with free surfaces

PDF Version Also Available for Download.

Description

The isotropic elastic wave equation governs the propagation of seismic waves caused by earthquakes and other seismic events. It also governs the propagation of waves in solid material structures and devices, such as gas pipes, wave guides, railroad rails and disc brakes. In the vast majority of wave propagation problems arising in seismology and solid mechanics there are free surfaces. These free surfaces have, in general, complicated shapes and are rarely flat. Another feature, characterizing problems arising in these areas, is the strong heterogeneity of the media, in which the problems are posed. For example, on the characteristic length scales ... continued below

Physical Description

PDF-file: 28 pages; size: 1.6 Mbytes

Creation Information

Appelo, D & Petersson, N A December 17, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The isotropic elastic wave equation governs the propagation of seismic waves caused by earthquakes and other seismic events. It also governs the propagation of waves in solid material structures and devices, such as gas pipes, wave guides, railroad rails and disc brakes. In the vast majority of wave propagation problems arising in seismology and solid mechanics there are free surfaces. These free surfaces have, in general, complicated shapes and are rarely flat. Another feature, characterizing problems arising in these areas, is the strong heterogeneity of the media, in which the problems are posed. For example, on the characteristic length scales of seismological problems, the geological structures of the earth can be considered piecewise constant, leading to models where the values of the elastic properties are also piecewise constant. Large spatial contrasts are also found in solid mechanics devices composed of different materials welded together. The presence of curved free surfaces, together with the typical strong material heterogeneity, makes the design of stable, efficient and accurate numerical methods for the elastic wave equation challenging. Today, many different classes of numerical methods are used for the simulation of elastic waves. Early on, most of the methods were based on finite difference approximations of space and time derivatives of the equations in second order differential form (displacement formulation), see for example [1, 2]. The main problem with these early discretizations were their inability to approximate free surface boundary conditions in a stable and fully explicit manner, see e.g. [10, 11, 18, 20]. The instabilities of these early methods were especially bad for problems with materials with high ratios between the P-wave (C{sub p}) and S-wave (C{sub s}) velocities. For rectangular domains, a stable and explicit discretization of the free surface boundary conditions is presented in the paper [17] by Nilsson et al. In summary, they introduce a discretization, that use boundary-modified difference operators for the mixed derivatives in the governing equations. Nilsson et al. show that the method is second order accurate for problems with smoothly varying material properties and stable under standard CFL constraints, for arbitrarily varying material properties. In this paper we generalize the results of Nilsson et al. to curvilinear coordinate systems, allowing for simulations on non-rectangular domains. Using summation by parts techniques, we show that there exists a corresponding stable discretization of the free surface boundary condition on curvilinear grids. We also prove that the discretization is stable and energy conserving both in semi-discrete and fully discrete form. As for the Cartesian method in, [17], the stability and conservation results holds for arbitrarily varying material properties. By numerical experiments it is established that the method is second order accurate.

Physical Description

PDF-file: 28 pages; size: 1.6 Mbytes

Source

  • Journal Name: Communications in Computational Physics, vol. 5, no. 1, January 1, 2009, pp. 84-107; Journal Volume: 5; Journal Issue: 1

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JRNL-237329
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 944324
  • Archival Resource Key: ark:/67531/metadc899613

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 17, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 2, 2016, 12:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Appelo, D & Petersson, N A. A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, article, December 17, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc899613/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.