Simulation of Comet Impact and Survivability of Organic Compounds

PDF Version Also Available for Download.

Description

Comets have long been proposed as a potential means for the transport of complex organic compounds to early Earth. For this to be a viable mechanism, a significant fraction of organic compounds must survive the high temperatures due to impact. We have undertaken three-dimensional numerical simulations to track the thermodynamic state of a comet during oblique impacts. The comet was modeled as a 1-km water-ice sphere impacting a basalt plane at 11.2 km/s; impact angles of 15{sup o} (from horizontal), 30{sup o}, 45{sup o}, 65{sup o}, and 90{sup o} (normal impact) were examined. The survival of organic cometary material, modeled ... continued below

Physical Description

6 p. (0.3 MB)

Creation Information

Liu, B T; Lomov, I N; Blank, J G & Antoun, T H July 18, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Comets have long been proposed as a potential means for the transport of complex organic compounds to early Earth. For this to be a viable mechanism, a significant fraction of organic compounds must survive the high temperatures due to impact. We have undertaken three-dimensional numerical simulations to track the thermodynamic state of a comet during oblique impacts. The comet was modeled as a 1-km water-ice sphere impacting a basalt plane at 11.2 km/s; impact angles of 15{sup o} (from horizontal), 30{sup o}, 45{sup o}, 65{sup o}, and 90{sup o} (normal impact) were examined. The survival of organic cometary material, modeled as water ice for simplicity, was calculated using three criteria: (1) peak temperatures, (2) the thermodynamic phase of H{sub 2}O, and (3) final temperature upon isentropic unloading. For impact angles greater than or equal to 30{sup o}, no organic material is expected to survive the impact. For the 15{sup o} impact, most of the material survives the initial impact and significant fractions (55%, 25%, and 44%, respectively) satisfy each survival criterion at 1 second. Heating due to deceleration, in addition to shock heating, plays a role in the heating of the cometary material for nonnormal impacts. This effect is more noticeable for more oblique impacts, resulting in significant deviations from estimates using scaling of normal impacts. The deceleration heating of the material at late times requires further modeling of breakup and mixing.

Physical Description

6 p. (0.3 MB)

Notes

PDF-file: 6 pages; size: 0.3 Mbytes

Source

  • Presented at: APS Topical Conference on Shock Compression of Condensed Matter, Kohala Coast, HI, United States, Jun 24 - Jun 29, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-PROC-232850
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 921161
  • Archival Resource Key: ark:/67531/metadc899595

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 18, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • April 13, 2017, 6:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Liu, B T; Lomov, I N; Blank, J G & Antoun, T H. Simulation of Comet Impact and Survivability of Organic Compounds, article, July 18, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc899595/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.