Long gamma-ray Bursts and Type Ic Core CollapseSupernovae have Similar Environments

PDF Version Also Available for Download.

Description

When the afterglow fades at the site of a long-duration {gamma}-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB had different environments from a collection of core-collapse supernovae identified in a high-redshift sample from colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 263 fully spectroscopically-typed supernovae found in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital ... continued below

Physical Description

11 pages

Creation Information

Kelly, P.L.; Kirshner, R.P. & Pahre, M. December 4, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

When the afterglow fades at the site of a long-duration {gamma}-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB had different environments from a collection of core-collapse supernovae identified in a high-redshift sample from colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 263 fully spectroscopically-typed supernovae found in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SN Ia) and some varieties of core-collapse supernovae (SN II and SN Ib) follow the galaxy light, but the SN Ic (like LGRB) are much more likely to erupt in the brightest regions of their hosts. The high-redshift hosts of LGRB are overwhelmingly irregulars, without bulges, while many low redshift SN Ic hosts are spirals with small bulges. When we remove the bulge light from our low-redshift sample, the SN Ic and LGRB distributions agree extremely well. If both LGRB and SN Ic stem from very massive stars, then it seems plausible that the conditions necessary for forming SN Ic are also required for LGRB. Additional factors, including metallicity, may determine whether the stellar evolution of a massive star leads to a LGRB with an underlying broad-lined SN Ic, or simply a SN Ic without a {gamma}-ray burst.

Physical Description

11 pages

Source

  • Journal Name: Astrophysical Journal

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13030
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 920595
  • Archival Resource Key: ark:/67531/metadc899431

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 4, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 9, 2016, 6:34 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kelly, P.L.; Kirshner, R.P. & Pahre, M. Long gamma-ray Bursts and Type Ic Core CollapseSupernovae have Similar Environments, article, December 4, 2007; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc899431/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.