A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators.

PDF Version Also Available for Download.

Description

This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect … continued below

Physical Description

172 p.

Creation Information

Wagner, Gregory John (Sandia National Laboratories, Livermore, CA); Collis, Samuel Scott; Templeton, Jeremy Alan (Sandia National Laboratories, Livermore, CA); Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E. (Sandia National Laboratories, Livermore, CA) et al. October 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 69 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

Physical Description

172 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 29, 2016, 7:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 69

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wagner, Gregory John (Sandia National Laboratories, Livermore, CA); Collis, Samuel Scott; Templeton, Jeremy Alan (Sandia National Laboratories, Livermore, CA); Lehoucq, Richard B.; Parks, Michael L.; Jones, Reese E. (Sandia National Laboratories, Livermore, CA) et al. A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators., report, October 1, 2007; United States. (https://digital.library.unt.edu/ark:/67531/metadc899282/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen