Parallel Simulation Algorithms for the Three Dimensional Strong-Strong Beam-Beam Interaction

PDF Version Also Available for Download.

Description

The strong-strong beam-beam effect is one of the most important effects limiting the luminosity of ring colliders. Little is known about it analytically, so most studies utilize numeric simulations. The two-dimensional realm is readily accessible to workstation-class computers (cf.,e.g.,[1, 2]), while three dimensions, which add effects such as phase averaging and the hourglass effect, require vastly higher amounts of CPU time. Thus, parallelization of three-dimensional simulation techniques is imperative; in the following we discuss parallelization strategies and describe the algorithms used in our simulation code, which will reach almost linear scaling of performance vs. number of CPUs for typical setups.

Creation Information

Kabel, A. C. March 17, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The strong-strong beam-beam effect is one of the most important effects limiting the luminosity of ring colliders. Little is known about it analytically, so most studies utilize numeric simulations. The two-dimensional realm is readily accessible to workstation-class computers (cf.,e.g.,[1, 2]), while three dimensions, which add effects such as phase averaging and the hourglass effect, require vastly higher amounts of CPU time. Thus, parallelization of three-dimensional simulation techniques is imperative; in the following we discuss parallelization strategies and describe the algorithms used in our simulation code, which will reach almost linear scaling of performance vs. number of CPUs for typical setups.

Source

  • Journal Name: Conf.Proc.C030512:3545,2003; Conference: Particle Accelerator Conference (PAC 03) 12-16 May 2003, Portland, Oregon

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13169
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 925787
  • Archival Resource Key: ark:/67531/metadc899231

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 17, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 26, 2017, 3 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kabel, A. C. Parallel Simulation Algorithms for the Three Dimensional Strong-Strong Beam-Beam Interaction, article, March 17, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc899231/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.