Toward a more robust variance-based global sensitivity analysis of model outputs

C. Tong

October 16, 2007
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Toward a More Robust Variance-based Global Sensitivity Analysis of Model Outputs *

Charles Tong
Lawrence Livermore National Laboratory
Livermore, CA 94550-0808

Abstract

Global sensitivity analysis (GSA) measures the variation of a model output as a function of the variations of the model inputs given their ranges. In this paper we consider variance-based GSA methods that do not rely on certain assumptions about the model structure such as linearity or monotonicity. These variance-based methods decompose the output variance into terms of increasing dimensionality called “sensitivity indices”, first introduced by Sobol’ [25]. Sobol’ developed a method of estimating these sensitivity indices using Monte Carlo simulations. McKay [13] proposed an efficient method using replicated Latin hypercube sampling to compute the “correlation ratios” or “main effects”, which have been shown to be equivalent to Sobol’s first-order sensitivity indices. Practical issues with using these variance estimators are how to choose adequate sample sizes and how to assess the accuracy of the results. This paper proposes a modified McKay main effect method featuring an adaptive procedure for accuracy assessment and improvement. We also extend our adaptive technique to the computation of second-order sensitivity indices. Details of the proposed adaptive procedure as well as numerical results are included in this paper.

1 Introduction

Sensitivity analysis (SA) studies how variations of a model output describing certain (for example, physical, biological, or social) processes can be accounted for by variations in the control or model parameters (collectively called input factors or input parameters). In the

*This work was performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
context of the present discussion, we restrict ourselves to sensitivity analysis of deterministic simulation models, which give identical results when presented with the same set of parameter values. Sensitivity analysis is increasingly recognized as an important tool for model building and validation. In general, sensitivity analysis is useful for all processes where it is important to know which input factors mostly contribute to output variability.

Sensitivity analysis methods are generally classified as either local or global. Local SA methods compute or approximate the partial derivatives of model outputs with respect to individual input factors at some nominal settings. Global SA, on the other hand, studies the effects of input variations on model outputs in the entire allowable ranges of the input space. Saltelli et al. [24, 27] have defined global SA methods by two properties:

1. The inclusion of influence of scales and shapes of the probability density functions for all inputs; and
2. The sensitivity estimates of individual inputs are evaluated while varying all other inputs (multi-dimensional averaging).

In this paper we are primarily concerned with global SA methods which can generally be decomposed into four steps:

1. Define credible ranges and distributions of input factors,
2. Create a sample of input factor values,
3. Evaluate the model for each sample point, and
4. Estimate the effect of each input factor on the model output.

Global SA methods can further be classified as either qualitative or quantitative. For applications with large number of input factors (tens to hundreds), the “curse of dimensionality” dictates that the computational cost for quantitative global SA becomes insurmountable. The purpose of qualitative SA studies is to identify (as opposed to quantify) the most important input factors using a relatively inexpensive set of simulation experiments, a process called “parameter screening”. The goal is to enable the quantitative SA studies to focus on the smaller subset of most important input factors.

Quantitative SA methods, which apportion the output variability to individual input variabilities, typically require large number of simulation runs. When simulation models themselves are computationally intensive, the computational cost of quantitative SA may become prohibitive. To make quantitative SA more tractable, response surface modeling (not within the scope of this paper) is often used to construct inexpensive surrogates in place of the original simulation models.

Among the quantitative SA methods, variance-based methods have received the most attention. The main idea of the variance-based methods is to evaluate the variance components for all of the individual or groups of input factors. By decomposing the model function
into a sum of elementary functions, Sobol’ [25] has shown that a decomposition of the model
output variance is possible (for independent input factors). These variance components are
called Sobol’ indices, and can be used for any complex model functions. When the model
is purely linear, the Sobol’ indices are equivalent to the standardized regression coefficient
in classical analysis. For models with K inputs, the number of Sobol’ indices is $2^K - 1$. In
practice, only the first and second-order Sobol indices are estimated. For large K, Homma
and Saltelli [6] proposed the the “total sensitivity indices” which can be computed by using
Monte Carlo simulations or the extended Fourier Amplitude Sampling Test (FAST) method.

This paper focuses on efficient and accurate methods for computing the first- and second-
order sensitivity indices. Specifically, McKay’s [13] main effect analysis is an efficient method
for computing the first-order sensitivity indices. However, a difficulty when applying this
method is the determination of a suitable sample size to achieve sufficient accuracy. One
often resorts to very large samples to ensure sufficient accuracy. Here, we propose an im-
proved McKay main effect analysis with an adaptive accuracy assessment and improvement
capability. We also propose an efficient method for computing the second-order sensitivity
indices using replicated orthogonal arrays and the corresponding second-order sensitivity
indices. Again, an adaptive refinement technique is used to facilitate accuracy assessment
and improvement.

In Section 2 we provide a brief introduction to variance-based sensitivity analyses. Section
3 gives details of McKay’s main effect analysis. Section 4 proposes improvements to McKay’s
method for accuracy assessment and improvement. Section 5 presents an efficient method
based on replicated orthogonal arrays for computing second-order sensitivity indices. Section
6 describes an adaptive strategy similar to the improved main effect analysis for computing
the second-order sensitivity indices. Numerical results are interspersed in Section 4 and 6.
Finally, a brief summary will be given in Section 7.

2 Variance-based Sensitivity Measures

Let $Y = F(X)$ be a mathematical model that maps a set of K input parameters $X \in \mathbb{R}^K$
to a scalar output Y. Let $E(Y)$ and $V(Y)$ denote the mean and variance of the distribution
of Y given probability distributions of X. A sensitivity measure for a given input X_i can be
obtained by assuming a complete knowledge of the true value of X_i and assessing the effect
of this knowledge on the output variance. To do this, we fix X_i at $X_i = X_i^{*}$ and compute the
corresponding conditional variance $V(Y|X_i = X_i^{*})$. Since this complete knowledge of X_i^{*}
is in general not available, we compute, $E(V(Y|X_i))$, which is the average of the conditional
variances given the probability distribution of X_i. Intuitively, $E(V(Y|X_i))$ measures the
variance of Y when X_i is known, and so $V(Y) - E(V(Y|X_i))$ (the added variance due to
the variability of X_i) is a reasonable indicator to quantify the importance of input X_i. This
indicator is equivalent to the statistical quantity called variance of conditional expectation.
(or VCE) via the following variance decomposition property:

\[V(Y) = V(E(Y|X_i)) + E(V(Y|X_i)). \]

(1)

The first term on the right hand side of this relation is the variance of conditional expectation (VCE), conditioned on \(X_i \); and the second term is the error or residual term. Here \(V(E(Y|X_i)) \) measures the variability in the conditional expected value of \(Y \) as the input \(X_i \) takes on different values. The residual term represents the variability in \(Y \) not accounted for by the input \(X_i \).

McKay defined the correlation ratio [13] (or main effect) by normalizing the VCE’s with \(V(Y) \):

\[\eta^2(X_i) = \frac{V(E(Y|X_i))}{V(Y)}. \]

(2)

A high correlation ratio implies that \(X_i \) is important in influencing the output variability. If all input factors are uncorrelated and there are no multi-way interactions, the sum of the correlation ratios is 1.

In [25], Sobol’ derived a first-order sensitivity index and his derivation is based on the decomposition of \(Y = F(X) \) into a sum of terms of increasing dimensionality:

\[F(X_1, X_2, \cdots, X_K) = F_0 + \sum_i F_i(X_i) + \sum_{i<j} F_{ij}(X_i, X_j) + \cdots + F_{12\cdots K}(X_1, X_2, \cdots, X_K) \]

(3)

where the integral of every term over any of its own input variables is zero. Sobol’ showed that, when all inputs are orthogonal to each other, this decomposition is unique and that \(V(Y) \) is the sum of the variances of each term in the decomposition:

\[V(Y) = \sum_i V_i + \sum_{i<j} V_{ij} + \sum_{i<j<k} V_{ijk} + \cdots + V_{12\cdots K} \]

(4)

where \(V_i \) is the variance of \(F_i \), \(V_{ij} \) is the variance of \(F_{ij} \), and so on. The total number of terms for \(K \) inputs is thus \(2^K - 1 \). The \(V_i \)’s can be shown to be equivalent to McKay’s correlation ratios by the following relationship:

\[V_i = V(Y)\eta^2(X_i) = V(E(Y|X_i)). \]

Similarly, \(V_{ij} \)’s are the (pure) two-way interactions such that

\[V_{ij} = V(E(Y|X_i, X_j)) - V(E(Y|X_i)) - V(E(Y|X_j)). \]

In the event that the inputs are correlated, the above relationships no longer hold. However, variance-based measures are still useful sensitivity indicators. Input correlation will not be covered in this paper.
3 Main Effect Analysis

Main effects (or sensitivity indices) can be computed by directly evaluating the K integrals for the K inputs. McKay [13] proposed a more efficient estimation method based on the use of a single replicated Latin hypercube sampling (r-LHS) design for all K inputs. It should be noted that even with this efficiency improvement the main effect analysis is still very expensive requiring a substantial number (for example, thousands) of function evaluations. For models that are themselves expensive to evaluate, a common strategy to make main effect analysis feasible is to first create a response surface model (also called surrogate model, metamodel, or emulator) and perform subsequent analyses on the substantially less expensive approximate model.

In the r-LHS design, each X_i takes on distinct values $X_{ij}, j = 1, \ldots, S$ where S is the number of levels (or symbols). These values are to be replicated R times in total so that the final design has $N = SR$ sample points.

Based on this design, the mean and variance of Y can be estimated by, for any i in $\{1, \ldots, K\}$,

$$\bar{Y} = \frac{1}{SR} \sum_{j=1}^{S} \sum_{r=1}^{R} Y^{(r)}(X_i = X_{ij}),$$ \hspace{1cm} (5)

and

$$V(Y) = \frac{1}{SR} \sum_{j=1}^{S} \sum_{r=1}^{R} \left[Y^{(r)}(X_i = X_{ij}) - \bar{Y} \right]^2,$$ \hspace{1cm} (6)

respectively, where $Y^{(r)}(X_i = X_{ij})$ is the output corresponding to $X_i = X_{ij}$ in the r-th replication. (that is, the R replications amount to keeping input i at some fixed value and varying all others). The estimator of the conditional expectation for $X_i = X_{ij}$ is given by

$$\hat{Y}(X_i = X_{ij}) = \frac{1}{R} \sum_{r=1}^{R} Y^{(r)}(X_i = X_{ij})$$ \hspace{1cm} (7)

Finally, the formula for the variance of conditional expectation (VCE) is given by:

$$VCE(X_i) = \frac{1}{S} \sum_{j=1}^{S} \left[\hat{Y}(X_i = X_{ij}) - \bar{Y} \right]^2 - \frac{1}{SR^2} \sum_{j=1}^{S} \sum_{r=1}^{R} \left[Y^{(r)}(X_i = X_{ij}) - \bar{Y}(X_i = X_{ij}) \right]^2,$$ \hspace{1cm} (8)

and the correlation ratio for input i can be computed by normalizing $VCE(X_i)$ with the output variance. A variant of the VCE is the biased VCE which is defined as:

$$VCE_b(X_i) = \frac{1}{S} \sum_{j=1}^{S} \left[\hat{Y}(X_i = X_{ij}) - \bar{Y} \right]^2.$$ \hspace{1cm} (9)

The correlation ratio is a useful estimator for input importance for general models. In addition, the scatter plots (the K plots, each with respect to individual inputs) from the replicated Latin hypercube samples provide useful visual information on how the output
behaves as \(X_i \) takes on different values \(X_{ij} \) (for example, by inspecting the line joining the means of all levels, namely, \(X_{ij} \)'s in the \(X_i \) scatter plot.) In addition, when \(R \) is sufficiently large (say, > 50), the parameter space is sufficiently explored so that the envelopes encompassing the output data in the scatter plots give additional qualitative information about parameter interactions (that \(X_i \) is interacting with some other inputs), although they offer no additional information on which other inputs \(X_i \) interacts with (It requires two-way interaction analysis described in Section 4 to quantify pair-wise interactions). An example is given in Figure 1 where the function is: \(Y = X_1 + X_1 \times X_2 + X_3^2 \) with four inputs \(X_i, i = 1, 2, 3, 4; X_i \in [0,1] \). Here, we observe in the scatter plots for \(X_1 \) and \(X_2 \) that the envelopes enclosing the data points are not uniform, indicating that these two input factors have interactions with other inputs. This observation agrees well with the example function. Furthermore, we observe that \(X_3 \) is nonlinear and \(X_4 \) has negligible effect on the output.

4 An Improved Main Effect Analysis

To create a replicated Latin hypercube sample, both \(S \) (number of levels) and \(R \) (number of replications) have to be specified (such that \(N = SR \)) by users. In [14], McKay investi-
gated the variability of correlation ratio estimates as a function of sampling variability and concluded that sufficiency of the sampling design (specifically, S and R) is very important to achieve the desired precision. Specifically, large N may be needed to adequately estimate the correlation ratios. In addition, if the biased correlation ratio estimator is used, large bias may result when R is small. Saltelli et al. [24] recommended that S should be larger than R to give good accuracy. Despite this recommendation, it should be noted that the adequacy of a sampling design is model dependent and thus not generally known a-priori. In this section we propose a more robust main effect analysis to address this issue.

Our improved main effect analysis is based on an iterative procedure consisting of an adaptive sampling scheme and an accuracy assessment tool to monitor the convergence of the correlation ratios. Our adaptive sampling scheme borrows from our earlier work on refinement of stratified designs [32]. Our improved method currently considers only adaptively increasing S (by a factor of 2 per refinement) for accuracy improvement while keeping R fixed. To offset the effect of bias [14], we use a moderate sized R and also the unbiased correlation ratio estimator.

In the rest of this section, we first show how to adaptively refine a replicated Latin hypercube design. We will then describe the iterative procedure utilizing this adaptive sampling scheme. A few examples will be given to study the effectiveness of this improved method.

4.1 Refinement for Replicated Latin Hypercube

We first denote a replicated Latin hypercube by an 3-tuple $LH(N,K,S)$ where N, K and S are the sample size, number of input parameters, and number of symbols or levels, respectively. The number of replications can be recovered by $R = N/S$. We begin with a fixed R (for example, $R = 50$) and an initial S (for example, $S = 4$). The basic idea in the refinement algorithm follows two major steps. The first step involves refining each grid cell (in a K-dimensional grid with S partitions in each dimension) into an 2^K subgrid. Then for each cell that already contains a sample point, a $LH(2^K, K, 2)$ (with size 2, K inputs, and 2 levels) containing the existing sample point is created for the grid cell. The refined sample can be shown to preserve its property as a replicated Latin hypercube. A selective random permutation is then applied to the newly created sample points to improve the statistical property of the entire refined sample while leaving the original sample points unchanged. The detailed refinement algorithm ($Algorithm \text{ Refine}LH$) consists of the following steps (given an initial replicated LH sample matrix Z):

Pattern reconstruction: Transform the sample matrix Z (an $N \times K$ matrix) to the corresponding LH pattern matrix A by (S is the current number of levels and R is the number of replications)

$$A(i, j) = [(Z(i, j) - L_j)/\delta X_j], \quad i = 1, \cdots, N; j = 1, \cdots, K,$$

where L_j and U_j are the lower and upper bound of input j, and $\delta X_j = (U_j - L_j)/S$.

7
Replication separation: Partition A into R individual LH pattern matrices $A_m, m = 1, \cdots, R$ (each A_m is an $S \times K$ matrix). Then, for each A_m,

Level refinement: Form another pattern matrix B_m (called base pattern matrix) from A_m by

$$B_m(i, j) = ([A_m(i, j)] - 1) * 2.$$

New sample insertion: Create the new pattern matrix \tilde{A}_m: for each row i of B,

1. Form a new LH pattern matrix C_i of size $2 \times K$.
2. Set $C_i \leftarrow C_i + [1 \ 1]^T B_m(i)$,
3. Permute C_i to have one row matching $A_m(i)$ (by first exchanging entries of row 1 of C_i with entries in the same column so that row 1 matches $A_m(i)$).
4. Load \tilde{A}_m row $2 \times (i - 1) + 1$ to row $2 \times i$ with C_i.

Sample randomization: Perform random permutation to each column of \tilde{A}_m but only to the newly created rows.

Sample concatenation: Append all $\tilde{A}_m, m = 1, \cdots, R$ matrices to form the final \tilde{A} pattern matrix.

Sample Generation: Map the pattern matrix (which has number of levels = $2S$ now) to the new sample matrix \tilde{Z} by scaling and translation with respect to the input ranges.

$$\tilde{Z}(i, j) = \tilde{A}(i, j) * \delta X_j + L_j + \epsilon(i, j)$$

where $\epsilon(i, j)$ is a small random perturbation and its value depends on $\tilde{A}(i, j)$ to preserve the replicated LH property.

An example of refining a LH sample is given in [32].

4.2 An Adaptive Algorithm for Main Effect Analysis

The refinement technique can be used in an iterative procedure to improve the accuracy of main effect analysis. The algorithm is as follow:

1. Select an initial replicated LH sample with sample size $N_0 = S_0R$. Prescribe a precision $0 < \epsilon < 1$. Set Iteration = 0.
2. Set Iteration = Iteration + 1. Then evaluate the model using the current sample.
3. Use the sample inputs and outputs to compute the VCE’s.
4. If Iteration > 1, do the following: for each VCE(X_i), compute the error e_i by finding the difference between the current and the last VCE(X_i); else set $e_i = \epsilon$.

8
5. If max $e_i < \epsilon$, terminate.

6. Apply the Refine algorithm to create the refined LH sample. Then go to step 2.

An alternative termination criterion for this procedure can be a prescribed maximum number of model evaluations. Using this criterion, the main effect analysis should give not only the $\text{VCE}(X_i)$'s, but also the estimated error bounds.

4.3 Numerical Results

In this section we demonstrate the effectiveness of our modified main effect algorithm on two test examples- one monotonic and one non-monotonic functions.

4.3.1 A Monotonic Test Problem

The first test problem is the monotonic Sobol’ function [24] given by:

$$Y = \exp \left(\sum_{j=1}^{6} b_j X_j \right) - I_6$$

where $b_1 = 1.5, b_2 = b_3 = b_4 = b_5 = b_6 = 0.9$,

$$I_6 = \prod_{j=1}^{6} \frac{e^{b_j} - 1}{b_j},$$

and X_j is uniformly distributed in $[0, 1]$. The true correlation ratios for X_1 is 0.287 and 0.1057 for $X_j, j = 2, \ldots, 6$.

We simulate our iterative algorithm 100 times, each with an initial S of 4 and $R = 50$. Figure 2 shows the convergence history of the 6 correlation ratios as a function of S. Due to the randomness in the initial LH design and subsequent refinements, each of the 100 simulations goes through a different convergence path. The blue ‘x’ in the plots are actual correlation ratios computed at different refinement levels. We observe firstly from the plots that all simulations exhibit similar paths converging to the true values as S is increased through refinement. In general, the spread of the correlation ratios shrinks as S is increased, demonstrating that larger sample sizes increase the confidence of the estimations. The reason that some envelopes expand a little initially is that the many sample point duplications due to the initial number of levels being too small ($S = 4$) limit the spread of the results.

4.3.2 A Non-monotonic Test Problem

The second test problem is the Ishigami function [24]:

$$Y = \sin(X_1) + 7\sin^2(X_2) + 0.1X_3^4\sin(X_1) \quad X_i \in [-\pi, \pi], i = 1, 2, 3$$

(11)
Figure 2: Sobol’ function: convergence history for the η^2's (black horizontal lines- true values)

which has the following statistics

$$\bar{Y} = 3.5; \quad V(Y) = \pi^4/50 + \pi^8/1800 + 1/2 + 49/8 \approx 13.8445$$

$$\eta(X_1) = 0.3139; \quad \eta(X_2) = 0.4424; \quad \eta(X_3) = 0.0$$

Again, We simulate our iterative algorithm 100 times, each with an initial S of 4 and $R = 50$. Figure 3 shows the convergence history of the 3 correlation ratios as a function of S. Again, we observe that the correlation ratios converge to their true values as S is increased through refinement. We again observe that in general the spread of the correlation ratios in general shrinks as S is increased.

5 Two-way Interaction Analysis

In this section we extend the idea for main effect analysis to two-way interaction studies for uncorrelated inputs. In this case, we employ the following relationship

$$V(Y) = V(E(Y|X_i, X_k)) + E(V(Y|X_i, X_k)) \quad (12)$$
where X_i and X_k are two distinct inputs under consideration. The first term on the right hand side is the variance of the conditional expectation $\text{VCE}(X_i, X_k)$ of Y, conditioned on X_i and X_k. Again, the second term is the error or residual term measuring the estimated variance of Y by fixing X_i and X_k. In addition, the correlation ratio for the input pair (X_i, X_k) is

$$\eta^2(X_i, X_k) = \frac{\text{V}(\text{E}(Y|X_i, X_k))}{\text{V}(Y)}.$$ \hfill (13)

A high correlation ratio shows that X_i and X_k taken together are important contributors to the output variability. The variance due to the interaction term alone is defined as

$$\text{V}(X_i, X_k) = \text{V}(\text{E}(Y|X_i, X_k)) - \text{V}(\text{E}(Y|X_i)) - \text{V}(\text{E}(Y|X_k)).$$ \hfill (14)

$\text{V}(X_i, X_k)$ can be computed using many different techniques, for example, by directly evaluating the corresponding integral. Here we illustrate its evaluation with the use of replicated orthogonal array sampling. Using orthogonal array design with a strength of 2, X_i and X_k take on values $X_{ij}, j = 1, \cdots, S$ and $X_{kl}, l = 1, \cdots, S$ where S is the number of symbols (or levels). Based on this design, the mean and variance of Y can be estimated by,
for any i and k in $\{1, \ldots, K\}$, $i \neq k$,

$$\bar{Y} = \frac{1}{S^2 R} \sum_{j=1}^{S} \sum_{l=1}^{S} \sum_{r=1}^{R} Y^{(r)}(X_i = X_{ij}, X_k = X_{kl}),$$

(15)

and

$$V(Y) = \frac{1}{S R} \sum_{j=1}^{S} \sum_{l=1}^{S} \sum_{r=1}^{R} \left[Y^{(r)}(X_i = X_{ij}, X_k = X_{kl}) - \bar{Y} \right]^2,$$

(16)

where $Y^{(r)}(X_i = X_{ij}, X_k = X_{kl})$ is the output corresponding to $X_i = X_{ij}$ and $X_k = X_{kl}$ in the r-th replication (that is, keeping the two inputs at some fixed values and varying all others). The variance estimator for the expectation conditioned on $X_i = X_{ij}$ and $X_k = X_{kl}$ is

$$\bar{Y}(X_i = X_{ij}, X_k = X_{kl}) = \frac{1}{R} \sum_{r=1}^{R} Y^{(r)}(X_i = X_{ij}, X_k = X_{kl})$$

(17)

To approximate the variance of conditional expectation $VCE(X_i, X_k)$, we use

$$VCE(X_i, X_k) = \frac{1}{S^2} \sum_{j=1}^{S} \sum_{l=1}^{S} \left[\bar{Y}(X_i = X_{ij}, X_k = X_{kl}) - \bar{Y} \right]^2 -$$

$$\frac{1}{S^2 R^2} \sum_{j=1}^{S} \sum_{l=1}^{S} \sum_{r=1}^{R} \left[Y^{(r)}(X_i = X_{ij}, X_k = X_{kl}) - \bar{Y}(X_i = X_{ij}, X_k = X_{kl}) \right]^2,$$

and the two-way correlation ratio for input pair (i, k) is obtained by normalizing $VCE(X_i, X_k)$ with the output variance $V(Y)$. Again, we can also compute the corresponding biased estimator by ignoring the second term in the above equation.

Finally, we arrive at the following pure two-way interaction effect

$$V(X_i, X_k) = VCE(X_i, X_k) - VCE(X_i) - VCE(X_k)$$

(19)

where $VCE(X_i)$ and $VCE(X_i)$ can be obtained from the main effect analysis.

This same idea can be applied to the analysis of higher order interaction. For example, to analyze 3-way interaction, a replicated orthogonal array design of strength 3 can be used together with the corresponding formulas for computing the variance of conditional expectations.

5.1 An Improved Two-way Interaction Analysis

Our improved two-way interaction analysis is based on an iterative procedure consisting of an adaptive orthogonal array sampling scheme (based on our earlier work in [32]) and an accuracy assessment tool (similar to the one in our improved main effect analysis) to monitor the convergence of the correlation ratios. As opposed to replicated Latin hypercube designs which have a sample size growth factor of ≈ 2 per refinement, the sample size growth factor
for orthogonal arrays is $O(K^2)$. Therefore, our improved procedure is less practical than the improved main effect analysis for large K (for example, $K > 5$).

In the rest of this section, we first present the refinement algorithm for orthogonal arrays. We will then describe how to embed this refinement algorithm in the iterative procedure. A few examples will be given to study the effectiveness of our improved method.

5.2 Refinement for Replicated Orthogonal Arrays

We first denote a replicated orthogonal array by an 4-tuple $OA(N,K,S,t)$ where N, K, S and t are the sample size, number of parameters, number of symbols or levels, and strength, respectively. The number of replications can be recovered by $R = N/(S^2)$. We begin with a fixed R (for example, $R = 50$) and an initial S (the minimum S depends on K). The basic idea in the refinement algorithm is similar to that of the Latin hypercube and it consists of the following two steps: (1) refine each grid cell (in a K-dimensional grid with S partitions in each dimension) into an S^K subgrid; and (2) for each grid cell that already contains a sample point, an $OA(S^2, K, S, t)$ including the existing sample point is created. The refined sample can be shown to preserve its property as a replicated orthogonal array. A selective random permutation is then applied to the newly created sample to improve the statistical property of the refined sample while leaving the original sample points unchanged. The refinement algorithm ($Algorithm \text{ RefineOA}$) consists of the following steps:

Pattern reconstruction: same as in $Algorithm \text{ RefineLH}$.

Replication separation: same as in $Algorithm \text{ RefineLH}$.

Level refinement: For each pattern matrix A_m, $m = 1, \ldots, R$, for another pattern matrix B_m (called base pattern matrix) from A_m by

$$B_m(i,j) = ([A_m(i,j)] - 1) \times 2.$$

New sample insertion: Create the new pattern matrix \tilde{A}_m: for each row i of B,

1. Form a new OA pattern matrix C_i with $OA(S^2, K, S, 2)$.
2. Set $C_i \leftarrow C_i + [1 \quad 1]^T B_m(i)$,
3. Permute C_i to have one row matching $A_m(i)$ (by first exchanging entries of row 1 of C_i with entries in the same column so that row 1 matches $A_m(i)$).
4. Load \tilde{A}_m row $S^2 \times (i - 1) + 1$ to row $S^2 \times i$ with C_i.

Sample randomization: same as in $Algorithm \text{ RefineLH}$.

Sample concatenation: same as in $Algorithm \text{ RefineLH}$.

Sample Generation: same as in $Algorithm \text{ RefineLH}$.

An example of refining an OA sample is given in [32].
5.3 An Adaptive Algorithm for Two-way Interaction Analysis

The OA refinement technique can be used in an iterative procedure to improve the accuracy of interaction analysis. The algorithm is as follows:

1. Select an initial replicated OA sample with sample size \(N_0 = S_0^2R\). Prescribe a precision \(0 < \epsilon < 1\). Set \(\text{Iteration} = 0\).

2. Set \(\text{Iteration} = \text{Iteration} + 1\). Then evaluate the model using the current sample.

3. Use the sample inputs and outputs to compute the VCE’s.

4. If \(\text{Iteration} > 1\), do the following: for each \(\text{VCE}(X_i, X_k)\), compute the error \(e_{ik}\) by finding the difference between the current and the last \(\text{VCE}(X_i, X_k)\); else set \(e_{ik} = \epsilon\).

5. If \(\max e_{ik} < \epsilon\), terminate.

6. Apply the Refine algorithm to create a refined OA sample. Then go to step 2.

5.4 Numerical Results

In this section we demonstrate the effectiveness of our modified interaction analysis on two test examples— one monotonic and one non-monotonic functions.

5.4.1 A Monotonic Test Problem

The first test problem is the following polynomial function given by:

\[
Y = X_1 + X_1X_2 + X_3X_i^3
\]

(20)

where \(X_j\) is uniformly distributed in \([0, 2]\).

We simulate our iterative algorithm 100 times, each with an initial \(S\) of 2 and \(R = 50\). Figure 4 shows the convergence history of the 3 two-parameter correlation ratios as a function of \(N = S^2R\). Again, because of the randomness in the initial orthogonal array design and subsequent refinements, each of the 100 simulations goes through a different convergence path. We again observe that the correlation ratios of all 100 simulations converge to their true values as \(S\) is increased through refinement. In addition, the spread of the correlation ratios shrinks as \(S\) is increased, showing again that larger sample sizes increase the confidence of the estimations.

5.4.2 A Non-monotonic Test Problem

The second test problem is the Ishigami function [24]:

\[
Y = sin(X_1) + 7sin^2(X_2) + 0.1X_3^4sin(X_1) \quad X_i \in [-\pi, \pi], i = 1, 2, 3
\]
Once again we simulate our iterative algorithm 100 times, each with an initial S of 2 and $R = 50$. Figure 5 shows the convergence history of the 3 two-way correlation ratios as a function of S. Again, the same trends are observed as before.

6 Summary

In this paper we propose robust first- and second-order variance-based methods for global sensitivity analysis. Specifically, the use of refinement techniques in stratified sampling methods such as Latin hypercube and orthogonal array together with the corresponding analyses has enabled the accuracy assessment and improvement of the correlation ratios. We have demonstrated the effectiveness of these methods through a few numerical examples.
Figure 5: Ishigami function: convergence history for the η^2’s (black horizontal lines- true values)

References

