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Abstract.  A neutron bang time detector consisting of a scintillator, light pipe, 
photomultiplier tube (PMT), and high-bandwidth oscilloscope has been implemented on 
the 60-beam, 30-kJ OMEGA Laser Facility at the University of Rochester’s Laboratory 
for Laser Energetics. Light from the scintillator, located 23 cm from the target, is 
transmitted outside the target bay through a 9.6-m-long, 2-in.-diam polished stainless 
steel pipe to the PMT. The PMT signal is recorded by two channels of a 6-GHz, 10-GS/s 
Tektronix 6604 oscilloscope.  The OMEGA optical fiducial pulse train is recorded on the 
third oscilloscope channel using a fast photodiode to provide the timing reference to the 
laser. The bang-time detector is absolutely calibrated in time and is able to measure bang 
time for neutron yields above 1 × 109 with accuracy of better than 25 ps.  
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I. Introduction 

In the Inertial Confinement Fusion (ICF) [1] experiments a target filled with a fuel is 

heated either by direct laser illumination or by soft x-ray radiation in a laser heated 

hohlraum. In the resulting implosion thermonuclear fusion occurs and charged particles, 

photons, and neutrons are being released. The time interval from the beginning of the 

laser pulse irradiating the target to the peak of neutron emission – the neutron bang time – 

is very sensitive to the details of the energy absorption and the hydrodynamic response of 

the target. Therefore the bang time is an important parameter of the ICF implosion 

providing information on the target performance which can be compared with numerical 

models. The 60-beam, 30-kJ OMEGA Laser Facility [2] at the University of Rochester’s 

Laboratory for Laser Energetics has several diagnostics [3-6] to measure neutron bang 

time.  These include a fast (<25 ps) streak camera-based neutron temporal diagnostic 

(NTD) [3] and a neutron bang time (NBT) [5] detector using scintillator coupled to 

photomultiplier tube (PMT) and recording signal on oscilloscope. This paper describes a 

new light pipe neutron bang time detector (LPNBT), which consists of a fast scintillator, 

light pipe [7], PMT, and high-bandwidth oscilloscope. The LPNBT utilizes the light pipe 

platform created on OMEGA in order to develop a gamma bang time [8] detector for the 

National Ignition Facility (NIF) [9]. The performance of the light pipe based gamma bang 

time detector will be described in a separate paper.  

   

II. LPNBT Design and Setup 

 The LPNBT diagnostic design is shown in Fig. 1. A 22 mm diameter, 1mm thick 

ultrafast BC-422 plastic scintillator [10] located at 23 cm from the OMEGA target 
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chamber center. The BC-422 scintillator has less than 20 ps rise time [11] and 1.4 ns 

decay time. A 3-mm-thick tungsten filter is located in front of scintillator as x ray 

shielding. Light from the scintillator propagates first through a 1-in. diameter, 17 cm long 

light pipe following by 2-in. diameter, 9.43-m long light pipe. The light pipe [7] is a 

multiple-section stainless steel tube with polished interior.  One turning mirror is used to 

combine two straight sections of the light pipe and redirect light to the room below 

Target Bay called La Cave on OMEGA. The light pipe with the scintillator is placed in a 

reentrant tube inserted into OMEGA target chamber. To provide x ray timing calibration 

the front part of reentrant tube shown on Fig. 1 is made from aluminum with a wall 

thickness 1 mm. The back side of the reentrant tube is made from stainless steel. Since 

the light pipe and scintillator assembly is COMPOSED of multiple sections, the 

scintillator or front shielding can be changed quickly.  At the end of light pipe a spherical 

lens with 102 mm focal length is used to focus the scintillator light onto a R3809U-52 

Hamamatsu microchannel plate PMT. The PMT has a 11 mm photocathode, 136 ps rise 

time and was operated at 105 gain. A 10-m-long LMR-400 coaxial cable connects the 

PMT to a 6-GHz, 10-GS/s, Tektronix TDS 6604 oscilloscope. A resistive splitter divides 

the PMT signal between two oscilloscope channels with different sensitivity settings to 

increase the dynamic range of the recording system. The OMEGA optical fiducial pulse 

train is recorded on a third channel, using a fast photodiode to provide a time reference to 

the laser. The fiducial analysis and fitting procedure of the fiducial pulse train are 

described in Ref. 5. 

 Both LPNBT and NBT [5] use fast scintillator, PMT, and high bandwidth 

oscilloscope. The main difference between LPNBT and NBT is to use of light pipe to 
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separate PMT and scintillator. This allows placing scintillator close to a target, putting no 

restriction on the size of PMT, and drastically decreasing neutron background and 

electromagnetic pulse noise in the PMT.  The PMT location outside of the Target Bay 

makes it more practical to put neutral density filters as needed in front of the PMT 

eliminating possible PMT saturation. As a result useful dynamic range of the LPNBT was 

increased in comparison with NBT.    

 

III.  LPNBT Performance  

 The LPNBT was tested on OMEGA with both DT and D2 implosions. Figure 2a 

shows the oscilloscope trace of the LPNBT for a D2 shot yielding 2.75 × 1011 neutrons. 

The signal from the PMT was attenuated by a high bandwidth 20 dB attenuator in order 

not to saturate oscilloscope. The signal attenuation and splitting into two oscilloscope 

channels was taken into account during analysis. The measured signals were fit by a 

convolution of a Gaussian and an exponential decay, as described in Ref. 4. The falling 

edge of the pulse was fitted only to 50% of the peak amplitude eliminating interference 

from re-scattered neutron after the main primary neutron peak. The exponential decay 

parameter in LPNBT fit was chosen to be 1.5 ns. It represents mainly the BC-422 

scintillator decay (1.4 ns) but also includes a small contribution from PMT, cable, and 

oscilloscope response time. The exponential decay parameter for the LPNBT was fixed 

for all type of shots (hard x-ray, D2, and DT). The Gaussian parameters (width, 

amplitude, and position) are free parameters of the fit for every shot to account for 

different yields, bang times, ion temperatures, and trigger shifts. The neutron pulse arrival 

time is defined to be the center of the Gaussian portion of the fit. Figure 2b shows the 
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oscilloscope trace of the LPNBT for a DT shot yielding 1.1 × 1012 neutrons. In case of 

DT implosions yields are about 100 times higher than in D2 implosions and can easily 

saturate PMT. Therefore, in DT implosion neutral density filters were used to attenuate 

light in front of PMT and expand the dynamic range of the LPNBT diagnostic. Figure 3 

shows the signal amplitude of the LPNBT channel as a function of D2 and DT neutron 

yield. Since the neutron yield is proportional to the integral of the signal and not the 

amplitude D2 and DT implosions may show different amplitudes for the same yield 

because of different ion temperature. The low neutron yield is limited by neutron 

statistics and although LPNBT recorded signals with yields from 5 x 108, the good pulse 

fit and timing accuracy starts from 1 x 109 yields. The amplitude in Fig. 3a is real 

amplitude from PMT and effective amplitude in Fig. 3b is amplitude with neutral density 

filters attenuation taken into account. The LPNBT recorded much more data in D2 

implosions than in DT implosions. This reflects OMEGA schedule and the fact that in 

most high yield DT shots the light pipe was used for gamma bang time development. The 

LPNBT was tested with yields up to 3 x 1013. With appropriate neutral density filters 

there is no limit for LPNBT in signal saturation. While NTD is limited by neutron 

induced background in the steak camera the PMT and oscilloscope in LPNBT location 

are not very sensitive to neutron background. It is known from gamma bang time 

experiments that the light pipe PMT and oscilloscope operate successfully in the neutron 

background from the yields of up to 1 x 1014. Therefore, the LPNBT diagnostic can 

measure the neutron bang time in implosions over the yield range from 1 × 109 to at least 

1 × 1014 or maybe even higher.  
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 The timing accuracy of the LPNBT was studied by comparison of the neutron 

bang time measured on the same shots by LPNBT and NTD. Figure 4a shows the cross 

calibration of the LPNBT and the NTD performed during two days of D2 implosions 

with a total of 14 shots, two shell thicknesses and yields varying from 2.3 × 1010 to 4.9 × 

1010. A good correlation between the NTD and the LPNBT is observed with an rms 

difference of 25 ps. This is less than the 28 ps rms expected for the difference between 

two independent measurements each with a time precision of 20 ps. Figure 4b a similar 

plot for one day of DT implosions with different shell thicknesses and yields varied from 

3.8 × 1011 to 7.6 × 1011. The rms of the time difference between the two diagnostics is 10 

ps, but number of shots is very limited. 

 There are two options for the calibration of the LPNBT bang time relative to the 

OMEGA laser pulse; first by cross calibration against NTD as shown on Fig. 4, and 

second by the LPNBT independent calibration using hard x-ray produced by a gold 

coated target irradiated with a short 100 ps laser pulse at best focus. To obtain a 

measurable signal for this calibration the tungsten shielding in front of the LPNBT 

scintillator was replaced with 1 mm thick aluminum filter. Figure 5 shows an x-ray-

induced signal recorded by the LPNBT, a curve fit to this signal using the expression 

described in the previous section, and the shape of the 100-ps laser pulse as recorded by 

the OMEGA UV streak camera system. The effect of the limited bandwidth and the 

scintillator decay are clearly seen in the recorded signal, but the position of the signal 

peak can be determined accurately using the fitting procedure. The x-ray calibration can 

be easily carried over to the neutron measurements using the propagation delay difference 

from the target to the scintillator between x rays and neutrons. A measurement 
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uncertainty in the scintillator distance on the order of 0.5 mm corresponds to a calibration 

error of 25 ps for D2 and 10 ps for DT neutrons.  
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FIGURE CAPTIONS 

FIG. 1. (E16699) Design of the LPNBT diagnostic. 

FIG. 2. (E16701) The LPNBT signals: 

a) for shot 46165 with a D2 neutron yield 2.75 × 1011,  

b) for shot 47575 with a DT neutron yield 1.1 × 1012. 

FIG. 3. (E16702) Signal amplitude of the LPNBT versus neutron yield: 

a) for D2 implosions, 

b) for DT implosions. 

FIG. 4. (E16703) Timing cross-calibration between the LPNBT and the NTD: 

a) for D2 implosions, 

b) for DT implosions.  

A line of equal bang time for both instruments is shown in the graph for comparison. 

FIG. 5. (NBTB Detail plot) LPNBT signal and corresponding fit for a hard x-ray 

emission produced in shot 50096 by a 100-ps laser pulse.  
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the lPnbt signals m(t) are fitted by a convolution
of a Gaussian and an exponential decay function
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the lPnbt can measure the neutron bang time  
in direct-drive implosions from 1 × 109 to 1 × 1014
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the lPnbt timing accuracy was compared with the 
streak-camera–based neutron temporal diagnostic (ntD) 
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