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Abstract

In experiments at the Omega Laser Facility, stimulated Brillouin backscatter (SBS) from gasbags

filled with Krypton and Xenon gases was unexpectedly 10 times lower than from CO2-filled gasbags

with similar electron densities. The SBS backscatter was a 1-5 % for both 527nm and 351nm

interaction beams at an intensity of ∼ 1015W/cm2. The SRS backscatter was less than 1%. The

351nm interaction beam is below the threshold for filamentation and all the SBS occurs in the

density plateau between the blast waves. Inverse bremsstrahlung absorption of the incident and

SBS light account for the lower reflectivity from Kr than from CO2. The 527nm interaction beam

filaments in the blowoff plasma before the beam propagates through the blast wave where it is

strongly absorbed. Thus, most of the 527nm SBS occurs in the flowing plasma outside the blast

waves. Nonlinear processes that limit the acoustic wave amplitudes to 1% of electron density model

the SBS reflectivity well in both CO2 and Krypton plasmas .

∗Electronic address: berger5@llnl.gov
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I. INTRODUCTION

Stimulated Brillouin scattering (SBS) of laser light from ICF plasmas constrains the

design of ignition targets for the National Ignition Facility.[1] Designs under consideration

involve the propagation of light through low charge state (Z) plasma mixtures such as HeH

and CH, intermediate Z plasma mixtures such as SiO2, and high Z plasma such as gold.

The gain of SBS is higher and threshold of SBS is lower as the ion acoustic wave damping

decreases. The dispersion properties of acoustic waves in hot, low density plasmas are very

similar for intermediate and high-Z plasma because ZTe/Ti � 1 and ion Landau damping

is negligible. Experiments with hohlraum targets at the former NOVA Laser Facility[2]

measured SBS that was consistent with scattering from gold plasma that was ablated from

the hohlraum wall.[3] In order to better understand the nonlinear SBS interaction for weakly

damped ion acoustic waves, CO2 gasbag plasmas were used in experiments at NOVA [4] as

a surrogate for gold in studying SBS in long scale length plasma because of the difficulties of

creating long scale length gold plasmas. However, collisional processes are much stronger in

gold than CO2. Thus Krypton (Z ∼ 30) or Xenon (Z ∼ 40) rather than a CO2 plasma should

provide a much better approximation to a gold plasma because of their similar collisional

damping and light absorption processes.

Experiments at the Omega laser facility[5] have reported [6] that the stimulated Brillouin

backscatter (SBS) from Krypton (Kr) and Xenon filled bags is 1-5% for incident laser inten-

sity of ∼ 8× 1014W/cm2 for both 351nm and 527nm laser wavelengths. Stimulated Raman

backscatter was even smaller (< 1%). This small SBS was somewhat unexpected given the

large SBS (>∼ 30%) reported from gasbags filled with CO2 to equivalent fully ionized electron

densities[4] and the fact that ion acoustic waves in CO2 and Krypton plasmas have simi-

lar dispersion properties. The ion Landau damping is negligible and the electron Landau

damping νa is small, about 0.01ωa where ωa ∼ k
√

ZTe/mi. In Krypton plasmas, the ion-ion

mean free path, λii ∝ n−1
i Z−4, is small enough that kλii

<∼ 1 so viscous damping must be

included. However, that damping rate is only about as large as electron Landau damping so

ion acoustic waves remain weakly damped. This large difference in SBS reflectivity of CO2

and Krypton plasmas cannot be explained with linear damping of the acoustic waves.

Because of the high charge state of Krypton, ZKr ∼ 30 and Xenon, ZXe ∼ 40, inverse

bremsstrahlung absorption is stronger and classical thermal conduction is weaker than in
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CO2 (ZCO2 = 7.3) plasma with the result that electron temperatures in Krypton and Xenon

are about 50% higher than those in CO2 for the same electron density. The SBS growth

rate and gain rate which are inversely proportional to Te might cause lower SBS reflectivity

from higher Z plasmas if the gain is in the range (∼ 25) where a change of less than two can

have a dramatic effect.

For 527 nm light, a quantitative analysis of the SBS gain from Krypton plasmas shows

that most of the SBS occurs in the expanding plasma (blowoff) because of the strong absorp-

tion of the incident and reflected light by the blast wave (the higher-than-average density

plasma at the edges of the bag, e.g. see Fig. 5 ) whereas, for the 351 nm light, the anal-

ysis of the gain shows that most of the SBS occurs in the plateau. The 527 nm SBS light

amplification is limited by the velocity gradient of the expanding plasma. The 351 nm light

backscatter is determined by a combination of (weak) plasma gradients, temporal incoher-

ence acquired in propagating through the blast waves, and absorption of the incident and

reflected light. Because the power of the typical speckle is above the ponderomotive self-

focusing threshold for 527 nm light in the plasma blowoff, filamentation and beam spray

plays an important role in SBS. In this region, the strong gradients and weak ion acous-

tic wave damping limit the growth to less than a speckle length. Filamentation is below

threshold for 351 nm light.

Quantitative modeling of the backscatter from all targets also demands that the ion

wave amplitude be nonlinearly limited to about 1% of the background density for both

527 and 351 nm incident light and for both Kr and CO2 gasfills. Previous experiments

[3, 4] and subsequent modeling [7] have also shown the need for nonlinear processes that

limit the ion acoustic wave amplitude. Here, we show that the same nonlinear modeling

applies successfully to both CO2 with 25-30% SBS and Krypton plasmas with 1-5% SBS

provided the laser propagation through the entire plasma, including the blast waves, is

included. Moreover, by including additional physical processes, the ion wave amplitudes

that are consistent with the level of SBS are nearly an order of magnitude larger than used

in previous modeling and are more consistent with levels found in kinetic simulations.[8, 9].

In Section II, the experiment is described and the stimulated Brillouin and Raman

backscatter results are presented. Section III discusses the radiation-hydrodynamic sim-

ulation of the plasma properties and establishes their validity by comparison with measure-

ments. The relevant linear theory of ion acoustic waves and the thresholds and gains for
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stimulated Brillouin scattering for the plasma conditions established in Sec. III are pre-

sented in Sec. IV. In Sec. V, we present 2D simulations of the propagation and SBS of the

351 nm and 527 nm laser light through Krypton and CO2 gasbags and show the importance

of inverse bremsstrahlung, plasma inhomogeneity, and plasma-induced laser incoherence in

determining the reflectivity. Without the absorption of the incident and reflected light by

the blast waves, the Kr SBS would be similar to the CO2 SBS. However, the SBS spectral

shifts from the 2D simulations of 527 nm light propagation do not agree with the data for

527nm incident light. In Sec. VI, we present 3D simulations of the light propagation through

the flowing plasma and show the importance of hotspots, filamentation, and nonlinear limits

on plasma waves in reproducing the measured 527 nm SBS spectrum. We conclude in Sec.

VII

II. EXPERIMENT DESCRIPTION

The experiments were performed at the OMEGA laser facility. A total of 19.5 kJ of 351nm

laser light in 1ns square ”heater” pulses irradiate the target. Most of the SBS and SRS data

were obtained with the focus of all the heater beams 3.5 mm beyond target center as shown

in Fig. 1. The heater beam overlap region is about 800µm. In addition two nonoverlapping

”interaction” beams smoothed with a phase plate and focused to the center of the gasbag

with an f/6.7 lens to an intensity of 8 × 1014W/cm2 in a 250µm spot irradiate the target.

One interaction beam has wavelength 351 nm and the other 527 nm. Each interaction beam

pulse is delayed by 500ps after the start of the heater pulse.

The plasma is formed by ionizing a gas contained within 0.35µm thick polyimid mem-

branes supported by a 0.7 mm thick aluminum washer. The bags are filled with Krypton

or CO2 to pressures between 0.48 atm and 1.47 atm which result in electron densities for

Krypton fills between .04N351
c and 0.11N351

c . The experiment was previously described and

analyzed for the radiation conversion efficiency.[6] Here, we present the light scattering re-

sults and describe the backscattered light diagnostics.

The light backscattered from the interaction beams was collected by the full aperture

backscatter station (FABS). When these data were taken, the SBS included only the light

reflected into the focusing optics of the incident light. In the simulations (described in Sec

V ), more than 80% of the backscatter of the 351nm light is reflected into the incident light

4



cone. For 527 nm light, most of the simulated backscatter is outside the incident light cone.

The example of a streaked spectrum of SBS in Fig. 2 is typical of the 351 nm SBS in that

the peak scatter occurs just as the heater beam power is turned off. After that time SBS

decreases as the plateau density region shrinks. The rate of increase of SBS shown in the

lineout in Fig. 2 is affected by the ramp up of the interaction beam and the response time

of the spectrometer, both of which are ∼ 200 ps.

In a stationary plasma, the peak SBS occurs for light shifted in frequency by the acoustic

wave frequency. The backscattered light wavelength is then

∆λ ' λ0
2Cs

c
=

21.7

h

√
ZTe

A
Å (1)

where h = 2 for 527 nm light and h = 3 for 351 nm light, Z is the charge state, and A is

the atomic number. The spectrum in Fig. 2 shows a narrow line shifted with respect to the

incident light by 6.5 Å, close to the value expected from Eq. (1). This data, typical of the

SBS of a 351nm interaction beam from Krypton targets, consists of a narrow line about 1

Å in width whose shift from the incident light wavelength increases monotonically with fill

density from ∼ 5 Å to 8 Å. The shift from CO2 targets for backscatter of 351 nm light is

also a narrow line consistent with backscatter from the plateau. The 527 nm spectra are

completely different in that the spectra are not narrow with peaks that are increasingly less

redshifted as the fill density increases and that are best explained if the SBS occurs in the

expanding plasma exterior to the blast wave. SBS 527 nm spectra from the lower density

Krypton fills and the CO2 fills has two components that are likely from the plateau (the

fainter signal and larger redshift) and the expanding plasma (the brighter signal).

The electron temperature measurements were performed with two different Thomson

probe beam configurations by means of collective Thomson scattering (α = 1/kλD > 1).

Initial measurements were accomplished with a 527 nm laser probe beam that is restricted

to the edge of the plasma because of strong absorption and refraction of the probe. The

heater beams in this case were focused 3.5 mm beyond the target center as shown in Fig. 1.

The installation of a 4ω (266 nm) Thomson scattering diagnostic (TSD) allowed new mea-

surements of the plasma temperature in the center of the gasbags. The beam configuration

in this set of experiments, also shown in Fig. 1 with a schematic of the Thomson scattering

setup,[10] was somewhat different ( the SBS spectral shifts listed in Table I and the hy-

drodynamic simulations indicate that the electron temperature is weakly dependent on the
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TABLE I: The measured SBS spectral shift

λ0 = 351 nm λ0 = 527 nm

Ne/N351
c Gas ∆λ0(Å) width (Å) ∆λ0(Å) width (Å) Omega Shot number

.05 CO2 8 1.5 3 6 27692

.065 CO2 8 1 5.6 3 27691

.03 Kr 5 1 3 7 29677a

.05 Kr 5.5 2 1.4 8 29676

.06 Kr 6.5 1 - - 32053b

.07 Kr 7 2 1.4 8 29674

.09 Kr 7.5 1 -1 10 29678

aThe 527 nm interaction beam energy was about 1/3 of the other shots.
bThere was no 527 interaction beam because this shot had Thomson scattering which uses the same

beamline.

focusing differences). This TSD had a time resolution of 100 ps and a spectral resolution of

0.5 Å. The scattering volume was 200× 200× 200µm for both probe wavelengths.

In Fig. 3, the TS data for the 6%N351
c Krypton fill from a scattering volume near target

center is shown from the same shot as the SBS data shown in Fig. 2. The peak-to-peak sep-

aration (ignoring the bright central peak of stray light) is about 0.65 nm. The temperature

deduced from the fitting the TS spectrum with the shape determined theoretically is 3-3.5

keV in the period 0.5-0.8 ns into the heater pulse.[11] At 1.3 ns, 0.3 ns after the heater beams

turn off, the electron temperature deduced is 1.8-2.0 keV near target center. The charge

state used in determining the electron temperature from the Thomson spectra was Z = 26

as calculated by the radiation-hydrodynamic modeling (see Sec. III). The temperatures are

accurate to ±20%. These measurements are in very good agreement with the modeling

presented in Sec. III.

The time-integrated SBS reflectivity from the Krypton gas filled targets is shown in

Fig. 4 for both 351 nm and 527 nm interaction beams. The 351 nm reflectivity decreases

montonicallywith density while the 527 nm reflectivity increases with density except for the

highest density fill. From the data in Table I, we know that the 527 nm SBS is primarily

from the expanding plasma, not the plateau. If only the plateau SBS were plotted, the 527
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nm reflectivity would be much smaller and would decrease with density.

III. SIMULATED PLASMA CONDITIONS

Radiation-hydrodynamics simulations of the gasbags were performed with hydra to

assist in the analysis of the experiments. Hydra is a 2D/3D multi-physics code based

originally on a hydrodynamics package by R. Tipton and developed by M. Marinak for

inertial confinement fusion simulations [12]. Hydra’s laser ray-tracing package includes

inverse bremsstrahlung absorption, bulk refraction, and turning-point energy deposition,

but does not simulate speckle-scale laser-plasma physics. The gasbags were simulated in

2D as oblate spheroids, with the axis of rotation perpendicular to the aluminum washer.

The major axis, corresponding to the inner diameter of the washer, was 2.75 mm, while the

minor axis was 2.4 mm. A 351 nm or 527 nm interaction beam was sent along the axis

of rotation. The interaction beam has little effect on the bulk plasma properites. The 39

heater beams were divided into 6 or 10 beam cones for the simulations to mimic the actual

pointing of each experiment, with 200 laser rays per beam.

The aluminum washer was included in the simulations. Electron thermal conduction from

the heated gas plasma to the solid washer plays an important role in determining the electron

temperature in the gas. A gradient driven (local) model for electron thermal conduction

was used for these simulations. For the local model, the maximum heat flux allowed across

a given surface is some fraction f ( the flux limiter) of the “free-streaming” heat flux,

q = min(−κ∇Te, f × qfs), (2)

where

qfs = (nekBTe) vte. (3)

Here, ne is the electron density, Te is the electron temperature, kB is Boltzmann’s constant

and vte =
√

kBTe/me is the electron thermal velocity. These simulations used a weak

flux-limiter of 1. The quotidian equation of state (QEOS) [13] with separate electron and

ion temperatures was used for all materials. The non-local-thermodynamic -equilibrium

(non-LTE) atomic physics model XSN [14] was used to generate opacities and calculate the

ionization states of the materials. Previous hydra simulations of gasbag targets showed

good agreement with experimental diagnostics [15].
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The rapid heating and explosion of the membranes compresses the gas on the inside to

form a ”blast wave” about 0.2mm thick. The peak density of the blast wave is about twice

the fill gas electron density. The Krypton plasma formed has a rather uniform electron

density plateau in the region between the blast waves.

Representative Krypton plasma conditions 700ps after the 351nm wavelength heating

laser beams have illuminated the gasbags are shown in Fig. 5 for the .04N351
c gasfill. The

electron temperature is highest at the center of the plasma and coolest at the edge where

the electron pressure is driving a hydrodynamic expansion. At the plasma edge, there are

significant gradients in the plasma flow velocity and density that act to limit the amplification

of SBS and SRS respectively.

The CO2 plasma conditions for the .04N351
c gasfill at 700ps are also shown in Fig. 5. Here

the electron temperature is about 2.6keV at the center, varies by less than 200eV between

the blast waves. The ion temperature in the plateau region of the CO2 plasma is lower

than in Krypton because the temperature equilibration rate is slower at lower Z for a given

electron temperature. Thus, the electrons must be heated more for a higher Z plasma before

the ion temperature decouples from the electron temperature. However, it is interesting

that the flow velocity profile shown in Fig. 5 is the same for CO2 and Krypton plasmas of

the same fill density. A simple explanation for the similar flow velocity profiles is that the

flow velocity scales with the sound speed Cs =
√

Z(Te + 5Ti/3)/mi which is very nearly the

same although Z, Te, and mi for the two materials differ.

In the plateau, the plasma electron temperature is determined by a balance of the amount

of energy absorbed from the 39 heater laser beams against the heat capacity of the gas, hy-

drodynamic expansion losses, radiation loss,[6] and the loss to the washers that initially

support the membranes . For the intermediate fill densities (.05 − .08N351
c ), the electron

temperatures have nearly the same spatial and temporal dependence. The maximum tem-

perature is at the center of these bags with a value that increases from 3.8keV at 500ps to

4.2keV at 900ps in good agreement with the Thomson scattering measurements reported

in Sec. II. After the 39 heating beams turn off at 1ns, the temperatures decrease from

hydrodynamic and radiation losses to less than 2.8keV by 1.3ns. The higher density fill

takes longer to heat up and reaches its maximum temperature of 3.9keV at 900ps. Because

the lowest density fill absorbs about 50% of the heater beam energy after 500ps whereas the

higher density fill absorbs more than 70%, its peak temperature is about 500eV lower.
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The charge state of Krypton for all the gas fills is spatially uniform with value ZKr ∼ 30.

The charge state calculated in the simulations is nearly the same as used in deducing an

electron temperature from the Thomson scattering data. The measured and simulated

temperature agree well while the heaters are on. The simulation has a higher electron

temperature at 1.3 ns by 0.5 keV than deduced from Thomson scattering.

The blast waves move into the stationary plasma at the sound speed and form a shock in

which the ion temperature is elevated to 5− 20keV, far above the electron temperature. In

the blast wave, the density is higher and the ion temperature is lower for the higher density

fills.[16] The ion temperature in the plateau region is less than 1keV. Although the electron

density is initially uniform, the gradient in the electron pressure pushes plasma out from the

center of the bag and lowers the density at the center. As the blast wave moves inward, the

length of the plateau region shrinks with time from nearly 2mm to ∼ 1mm by 1.1ns.

In the region exterior to the blast waves, the plasma expands similarly to a laser-heated

disk or thin foil where the density drops exponentially and the magnitude of the velocity

increases linearly.[17] The velocity profiles for all the Krypton fills are quantitatively the

same. However, the density Ne, electron temperature Ne, and Ne/Te are higher at a given

flow velocity for the higher density fills. This scaling is important to understanding the SBS

from 527 nm incident light.

IV. STIMULATED BRILLOUIN SCATTERING: LINEAR REPONSE

Absorption of the incident light is a dominant factor for these high-Z plasmas because

the inverse bremsstrahlung intensity absorption rate,

κib =
Ne

Nc

νei

|vg|
, (4)

is proportional to the charge state of the ion, Z, through the rate’s dependence on the

electron-ion collision frequency,

νei = 4
√

(2π)NeZe4 ln Λ/
(
3m2

eV
3
e

)
. (5)

In Eq. (4), the light wave group velocity in the plasma is vg = σc
√

1− Ne/Nc where

σ = ±1 for the incident and reflected light respectively. Here, me is the electron mass, e is

the electron charge, Ve is the electron thermal velocity, c is the speed of light in vacuum,
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Ne is the electron density, Nc is the critical density for light of frequency ω0, and ln Λ is the

Coulomb logarithm appropriate for absorption. The charge state for Krypton (Z ∼ 30) is

about 4× larger than that for CO2 (Z = 7.3) which has the effect of reducing the absorption

length and increasing the electron temperature in Krypton plasma with respect to CO2

plasma.

The 527nm and 351nm laser intensity spatial profiles for the interaction beams in the

4%N351
c Krypton and 4%N351

c CO2 gasfills are shown in Fig. 6. For the Krypton-filled bags,

the laser light is strongly absorbed in the high-density blast waves at the edge of the density

plateau. The least reduction is for the 351nm laser propagating into the 4%N351
c bag; the

strongest reduction is for the 527nm laser propagating into the 11%N351
c bag.[18] For the

CO2 filled bags, the blast waves absorb much less light and the 351 nm laser intensity is

highest in the plateau region.

In low-Z gas-filled bags, the stimulated scattering occurs mostly in the plateau region

between the blast waves. In these high-Z plasmas, a boost in the amplification occurs in the

plasma expansion where the flow velocity passes through zero because the laser intensity is

higher there than in the plateau because of absorption as the laser light passes through the

blast wave. This absorption by the blast wave is particularly important for the 527nm laser

light because of the factor Ne/Nc in the spatial absorption rate, κib. In Fig. 7, the calculated

transmission fraction of light through the blast wave (without accounting for backscatter)

is shown for 351nm and 527nm laser light. For the 527nm light about 50% of the light

penetrates the blast wave for the lowest density fills but only 10% at 0.11N351
c fill density.

A. Linear Ion acoustic wave dispersion

As discussed previously, the linear ion Landau damping for intermediate to high Z plasmas

when Ti < Te is negligible because there are very few ions at the phase velocity of the

wave. Assuming the collisionless dispersion relation is appropriate for the moment, the

only damping is electron Landau damping. Using the cold ion response, one can solve the

dispersion relation to find the frequency, ωa, and amplitude damping rate, νa,

ωa = k

√√√√ ZTe/mi

1 + k2λ2
de

+ γiTi/mi, (6)

10



νa/ωa =
1
2

√
π/2

√
Zme/mi

(1 + k2λ2
de)

3/2
. (7)

In Eq. (6), the value of γi ( 5/3 < γi < 3) is unimportant because the ion temperature

contribution to the frequency is negligible. In Eq. (7), the very small ion contribution to

the Landau damping is neglected. If kλde � 1 and Z/A = 1/2 where A ≡ mi/mp and mp,i

is the mass of a proton, ion, then νa/ωa
∼= .01. For hot low density plasmas, kλde ∼ 1 and

the electron Landau damping is even smaller. For high Z plasma, Z/A < 1/2 which also

reduces the linear Landau damping. Not accounted for in Eq. 7 are collisional effects which

play a role when kλii
<∼ 1. For a single species plasma, the damping from ion viscosity

has been computed as a function of ZTe/Ti and kλii.[19, 20] For the Krypton gasfills in

the plateau region, kλii ∼ 0.1 − 0.5 for which, coincidentally, the viscous damping has a

broad maximum value ( as a function of kλii ) of νvis
a = .03kvi where vi =

√
Ti/mi is the

ion thermal velocity. Thus, νvis
a /ωa = .03

√
Ti/ZTe

√
1 + k2λ2

de ∼ .003 which is small because

Ti � ZTe. However, it is about the same magnitude as the electron Landau damping for

Krypton plasmas. For CO2 parameters, kλii ∼ 10 and this viscous damping is an order of

magnitude smaller, (νvis
a /ωa)CO2 ∼ 10−4.

In the lowest density Krypton fill and for 351nm incident laser light, the wavelength

of the SBS-driven acoustic wave, λ = 2π/k ∼ λ0/2, is comparable to the electron Debye

length λde = Ve/ωpe ∼
√

Te/Ne and thus the acoustic wave frequency is dependent on kλde

in addition to kCs = k
√

ZTe/mi. The variation in kλde across the plasma places additional

limits on the SBS amplification. In Fig. 8, the variation of the local acoustic wave frequency

in space is shown for various approximations for the nominal 4%N351
c gasbag. There, one can

see about a 20% effect on the acoustic wave frequency from kλde for the 351nm wavelength

laser wave that reduces the frequency shift from the nominal kCs. The kλde factor also is

evident in the blast wave where the density changes rapidly; however, the Doppler shift from

the flow velocity variation is larger.

B. Nonlinear Ion wave processes

The ion acoustic waves responsible for SBS backscatter are driven typically and in these

experiments also to large enough amplitudes that nonlinear fluid and kinetic effects are

important. Examples of fluid nonlinearities are ion wave decay[8, 21–25] and harmonic
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generation.[24, 26] In the former, the large amplitude ion wave decays into two longer-

wavelength, lower-frequency ion waves which drains away some of its power. In contrast,

in harmonic generation shorter wavelength ion waves are generated as the wave steepens,

a well-known phenomenon in hydrodynamics as well. Ions and electrons can be trapped if

they travel near the phase velocity of the wave and thereby alter both the Landau damping

and the natural frequency of oscillation. The trapping of ions has been studied extensively

in kinetic simulations and the magnitude and sign of the frequency shift has been obtained

in both one and two dimensional simulations.[8] Electron trapping also causes a frequency

shift of a similar magnitude but opposite sign.[27, 28] Electrons are trapped and alter the

linear response for very small wave amplitudes because the electron trapping velocity is

much larger than the ion trapping velocity, Vtr =
√

eφa/ms, where s = e, i for electrons and

ions respectively. The electron trapping velocity equals the phase velocity when eφa/Te =

δna/n = Zme/(2mi) whereas, for ions, this occurs only when δna/n ∼ 1.

For CO2 and Krypton plasmas, since there are very few ions at the phase velocity, ion

trapping has little effect. Because kλde of the primary acoustic wave may be large (> 0.4),

the harmonics are significantly off resonance which renders harmonic generation ineffective

when δna/n <∼ .01, the value that simulates the data best. Because an effective nonlinear

model valid for CO2 and Krypton plasmas does not exist in the literature, we will use a

phenomenological model in the fluid simulations presented in Sec. V.

C. Stimulated Brillouin Back-Scattering Thresholds and Gains

The SBS amplitude temporal growth rate without including damping of either decay

wave is

γ0 =
1

8

V0

Ve

√
Ne

Nc

√
ωaω0 (8)

where V0 = eE0/meω0 is the oscillatory velocity of the electron in the laser electric field,

E0. Typically, the strength of stimulated backscattering is discussed in terms of the gain

factors that are the measure when the instability is convective. In the intermediate to high

Z plasmas that are considered here, the ion wave damping is small enough that absolute

growth is possible. To remind the reader, the parametrically coupled waves grow in time

convectively at the rate ∼ γ0 to a finite final amplitude from an initial value in a frame

moving at (vg − vga)/2 ∼ −|vg|/2 where vga is the ion acoustic wave group velocity. The
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TABLE II: The convective and absolute intensity SBS thresholds for 4% N351
c .

λ0 = 351nm λ0 = 527nm

Icnv(W/cm2) Iabs(W/cm2) Icnv(W/cm2) Iabs(W/cm2)

CO2 1.2× 1012 2.6× 1015 9.6× 1011 6.7× 1014

Kr 4.6× 1012 5× 1015 3.6× 1012 1.3× 1015

wave can also grow at a fixed point until nonlinear limits are reached if it is absolutely

unstable but the intensity threshold for absolute growth is higher and the temporal growth

rate γabs
0 is smaller than γ0 by the factor

√
|vga/vg|. If the gain for convective growth is large

enough, e.g. greater than 20, the convective interaction certainly will be nonlinear also. The

damping thresholds for convectively unstable SBS in these weakly damped acoustic wave

plasmas occur at low laser intensity. Convective and absolute growth occur if γ0 > γcnv
0 and

γ0 > γabs
0 respectively where,

γcnv
0 =

√
νaνib (9)

γabs
0 =

√
|vgavg|

2
(

νa

|vga|
+

νib

|vg|
), (10)

where νib = 0.5Neνei/Nc = 0.5vgκib is the light wave inverse bremsstrahlung absorption rate.

In Table II, the absolute and convective threshold intensities are evaluated for CO2 and

Krypton plasma parameters characteristic of the plateau region in the 4% fill. The convective

SBS threshold is greatly exceeded for all conditions. The absolute threshold is exceeded only

in the laser speckles for 351 nm illumination and is marginally exceeded for the nominal

(vacuum) laser intensity for 527 nm light. However, the absorption of the laser light in the

Krypton blast waves reduces the average laser intensity in the plateau region enough that

the absolute threshold is also only exceeded in the laser speckles. Absolute growth in laser

speckles would occur on timescales of the transit time of the sound wave along an f/6.7

speckle, namely 350ps for 351 nm light, during which time the speckle location will have

changed and the plasma parameters as well.[29] Given that convective growth is certainly

occurring in these plasmas, the convective gain exponent provides a good guide to the level

of SBS that should be expected.
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An approximate formula for the SBS intensity gain is[30]

Gsbs =
1

8

Ne

Nc

V 2
0

V 2
e

ω0

c
Min(ωaL/νa, πL∇), (11)

where νa is the amplitude damping rate of the acoustic wave, L is the plasma length, and

L∇ is the gradient scalelength of the dominant inhomogeneity, usually the velocity gradient

but for kλde ∼ 1, the density gradient is important. One sees from Eq. 7 that νa/ωa < .01

for intermediate to large Z plasma and, for weak gradients, the SBS gain can be quite large

(e.g. Gsbs ∼ 20 in one speckle length, Ls = 8f 2λ0, if the laser intensity is 8 × 1014W/cm2,

the electron temperature is 3 keV, the electron density is 0.08Nc) . Here, the focusing optic

f-number is f = 6.7 for the Omega Laser Facility and λ0 is the laser wavelength. Exterior

to the blast waves, the flow velocity gradients (L∇ ∼ Ls) limit the 351 nm light gain to less

than one for the average intensity so little 351 nm SBS is expected from that region. On the

other hand, the 527 nm light SBS gain is ∼ 4 for the average laser intensity, Ne/N
527
c = .04,

Te = 2.5keV, and L∇ = Cs/|∂V/∂z| = 0.25mm, values typical for the lowest density fill near

V = 0. For the higher density fills, this gain is achieved at points where |V | is large enough

to cause a significant Doppler shift.

The blast wave can absorb as much as 90% of the power of the 527 nm incident light at the

higher Krypton fill densities. Thus, even if 100% of this power is reflected in the plateau,

only 10% of that would be transmitted by the blast wave and measured by backscatter

diagnostics as 1% reflectivity. Because transmission through the blast wave at the highest

fill gas density is about 40% for 351 nm light, the SBS reflectivity could be as high as 16%

at that density if we apply the same argument.

Before considering SBS gains in more detail, let’s consider the possible influence of fila-

mentation. The typical power in a speckle divided by the critical power for ponderomotively-

driven filamentation is[30]

Gf =
1

4

Ne

Nc

V 2
0

V 2
e

ω0Ls

c
. (12)

In the case of 527nm incident light, Ls ∼ 0.27mm. If Gf > 1, the speckle will self focus.[31]

In Fig. 9, this filamentation gain parameter given in Eq. (12) is shown as a function of the

position in the 0.07N351
c Krypton gasbag for incident 527nm laser light. This parameter

is averaged over the length of a speckle. Because of the strong laser light absorption, this

speckle self-focusing gain factor is bigger than one only in the expanding plasma which is

itself only about a speckle length. For other Krypton fills, the behavior is similar. For
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351nm incident light, filamentation is less important because the typical power in a speckle

is smaller as Ls ∝ λ0 and V0 ∝ λ0 for constant laser intensity. For CO2 gasbags filled to

4% N351
c and illuminated with 351 nm light this gain factor is ∼ 1 over the entire length of

the plasma. Note in the region of plasma where the SBS gain is dominated by gradients the

filamentation gain given in Eq. (12) and the SBS gain in Eq. (11) are nearly the same if

the speckle length is about the plasma scale length. That is the case considered here.

Localized pressure gradients induced by absorption of the nonuniform light intensity

add to the ponderomotive force and increase the depth of the density perturbations when

electron thermal conduction is not fast enough to smooth the temperature gradients. In the

hot plateau region, for both Krypton and CO2, the slowing-down mean free path λe ∼
√

Zλei

is greater than 100/k with k ∼ ω0/2fc which is beyond the parameter range covered by the

Fokker-Planck simulations.[32] On the other hand, the temperature in the plasma expansion

low enough that kλe ∼ 10 for which parameter, the thermal conduction is known to be

reduced. This enhancement in filamentation gain is not sufficient to make 351 nm light

filamentation unstable. However, filamentation for 527 nm light, including thermal effects

on self-focusing [33], plays an important role in the pF3D simulations of SBS from high-Z

Krypton plasmas.

In calculating the SBS gain, we use the more general formulation,

pGsbs(ωs, z) =
∫ z

−∞
dz

(
k2V 2

0

8vgsωs

Im

(
χe(1 + χi)

ε(ω0 − ωs, z)

)
− κib (ωs, z) /2

)
, (13)

Gsbs(ωs) = pGsbs(ωs, z∗), (14)

that allows for re-absorption and ends the integration at the z∗ for which pGsbs(ωs, z) is

largest. The light is assumed incident from z = −∞. In most cases, the peak gain corre-

sponds to ∼ 10 Å redshift for the 527 nm light and ∼ 7 Å redshift for the 351 nm light.

As displayed in Table III, the shift for peak gain of 351nm SBS is within an 1 Å of the

experimental result shown in Table I and in Fig. 2. In the CO2 gasbags the 351 nm gain

is strongly peaked at ∼ 7 Å for 351 nm light. Re-absorption is not a significant effect for

CO2 plasmas. Because the gain at other wavelengths is less than one for 351 nm light and

the gain for speckle self-focusing is also, the good agreement is expected.

For 527 nm light the peak of the SBS gain has little correspondence with the measured

spectral shift as seen in Table III. The two factors that explain the discrepancy are the

filamentation gain parameter which is larger than one (see Fig. 9) and the SBS gain which
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is ∼ 4 in the expanding plasma for 527 nm light. Under these conditions, a few % SBS is

likely from localized regions where the laser intensity is much higher than the average.

The peak SBS intensity gain as a function of the electron density of the fill gas is plotted

in Fig. 10 for both 351 and 527 nm incident light. Also shown is the gain for 351nm

light without accounting for the absorption in the blast wave or the additional gain in the

expanding plasma. These two gains are nearly the same for the lowest fill density. For

the higher density fills the gains without the blast wave absorption are higher. The factor

(Ne/V
2
e )ωaL/νa in Eq. (11) is nearly the same for 527 and 351 nm light. If the absorption

were weak, one would expect a λ3
0 ∼ 3 scaling of the gain from the remaining factors.

However, the gains in Fig. 10 for incident 351nm and 527nm for the same gasfill do not

obey that scaling. Including blast wave transmission from Fig. 7, one expects the 527 nm

light SBS gain to be twice that of 351nm at 4% N351
c but only 70% at 11% N351

c in agreement

with the gain scaling in Fig. 10.

Again the gains are lower at the higher fill gas density because of the stronger absorption

of the laser light in the higher density blast waves of the higher density fills. The 351 nm

gain shows an increase with fill gas density as one expects from Eq. (11) until absorption in

the blast wave comes into play at the highest fill density. The 527 nm gain is highest at the

lowest fill density because blast wave absorption is minimized. The SBS gain is largest and

varies little during the first half of the interaction pulse. After the heaters turn off during

the second half of the interaction pulse, the electron temperature decreases, absorption of

the interaction pulse increases, the length of the plateau region decreases, and, consequently,

the gain decreases.

D. Stimulated Raman Back-Scattering Gains

The SRS gains for 527nm incident light must take into account the presence of the blast

waves because, as one can see from Fig.5, the peak density of the blast wave may exceed

the critical density for the SRS light amplified in the density plateau between the blast

waves. For the cold plasma Langmuir wave frequency, the SRS scattered light frequency

from the plateau density in the .07N351
c fills is almost exactly equal to the maximum plasma

frequency in the blast wave; that is, the SRS light would be internally reflected. With

the increase in the Langmuir wave frequency from the thermal dispersion, this reflection is
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TABLE III: The measured SBS spectral shift and the spectral shift corresponding to the peak of

the SBS gain

λ0 = 351 nm λ0 = 527 nm

Ne/N351
c Gas ∆λexpt

0 (Å) ∆λth
0 (Å) ∆λexpt

0 (Å) ∆λth
0 (Å) Omega Shot number

.05 CO2 8 7 3 11 27692

.05 Kr 5.5 6 1.4 10 29676

.06 Kr 6.5 7 - 10 32053a

.07 Kr 7 7 1.4 11 29674

.09 Kr 7.5 - -1 - 29678

.11 Kr - 7 - -5:10 -

aThere was no 527 interaction beam because this shot had Thomson scattering which uses the same

beamline.

assured. For the higher density fills, the plateau density is about 1/4Nc which ensures that

any SRS scattered light will not escape the plasma. The Langmuir waves in the plateau

region are weakly damped for higher density fills and strongly damped for lower density

fills as klwλde = 0.37, 0.29, 0.23 for Ne/N
351
c = .04, .06, .08 respectively. Here, klw is the

wavenumber of the Langmuir wave. Although the SRS light may not escape the plasma,

the SRS of 527nm light in the plateau region might be significant enough to reduce the SBS

by competition. However, simulations (discussed in Sec. V ) with both SBS and SRS did

not show any reduction in SBS in the most likely case where klwλde = 0.3. Thus the SRS

gains for the 527nm incident light can be calculated for the expanding plasma outside the

blast waves where laser absorption is not important. The 527 nm gains are a few in the

expanding plasma outside the blast wave. Significant growth, leading to about 1% SRS can

occur localized in speckles, but simulating that effect requires a good representation of high

intensity speckles by large 2D or 3D regions. Since SRS plays a minor role in the energetics

of these plasmas, such simulations were not pursued.

For the 351nm incident light, internal reflection of the light SRS scattered from the

plateau does not occur but significant inverse bremsstrahlung re-absorption needs to be

included to estimate the backscattered SRS. For the higher density fill, the peak density in
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the blast wave is above Nc/4 and the SRS spectrum will extend up to ∼ λ0/2. Because

of the quarter-critical density, the 2ωpe instability, which we do not consider here, is also

possible in these plasma. The peak density in the blast wave for the lower density fill is

less than quarter-critical density for 351nm light. The 351nm SRS gains are insignificant

because the Langmuir wave in the plateau region is strongly damped or nonresonant (

klwλde = 0.6, 0.47, 0.4 for Ne/N
351
c = .04, .06, .08 respectively).

V. TWO DIMENSIONAL SIMULATIONS OF LIGHT PROPAGATION AND

STIMULATED BRILLOUIN BACK SCATTER

The simulation code pF3d[34] was used to propagate self-consistently the incident light

through the Krypton and CO2 plasmas. Here the small-scale structure of the laser beam,

speckles, and the overall spot size are taken into account. In addition to ponderomotive

self-focusing, enhanced focusing from thermal pressure gradients computed with a nonlocal

heat conductivity are included. Backscattered SRS and SBS grow throughout the plasma

from small amplitude fluctuations in the acoustic waves and Langmuir waves with the effects

of light reabsorption naturally included. As mentioned previously, little self-focusing occurs

for 351 nm light in these simulations of Krypton plasmas because the power in the 351

nm speckles is below threshold for self-focusing. In Fig. 11, two dimensional pictures of

the simulated laser propagation through a Krypton-gas-filled bag is shown for 527nm and

351nm light. The 351nm light propagates with little spray but noticeable absorption in this

example. The 527nm light is more strongly absorbed and shows some spray after propagating

through the blast wave at which point there is little laser power left.

A. CO2 plasma modeling

Because pF3D is a fluid code with enveloped equations for the light and SBS-driven

acoustic waves, nonlinear limits on the growth of the acoustic waves must be imposed with

models based on theory or kinetic simulations. A phenomenological model for limiting the

acoustic wave amplitude was used previously for modeling SBS in CO2 gasbags.[7] In this

model, the damping on the acoustic wave is proportional to |δnac/nth|Mnl where δnac is the

amplitude of the acoustic wave that backscatters the incident light, nth is a fraction of local
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electron density, and Mnl is typically 4. Using that model for the 4% fill CO2 plasma with

nth = .01ne produces a reflectivity of ∼ 20% for 351nm incident light in reasonable agreement

with the measured 25% 351 nm reflectivity. Without limits, the CO2 351 nm SBS simulated

reflectivity is ∼ 55%.

In these simulations, good agreement with the measurements of total SBS was found for

both laser wavelengths and for Krypton and CO2 fills if the amplitude of the ion acoustic

waves was limited to 1% of the local electron density. This value is significant bigger than

the value needed in previous simulations of the 351 nm reflectivity from CO2 gasbags at

the NOVA laser facility.[7] There are several differences between those simulations and the

current ones. In Ref. [7], only the plateau was simulated, the plasma parameters were

Ne = 0.065N351
c , Te = 2.7keV, Ti = 1.5keV, the mean velocity < V >= 0, and the laser

beam envelope was uniform in the transverse dimension. For a plateau length of 1.7mm with

uniform density, temperature, and no flow, the linear SBS intensity gain is 350, an order

of magnitude larger than the CO2 gains for the OMEGA gasbags. For this more unstable

case, the pf3d simulated reflectivity is 85% without limits on the acoustic wave, 72% if the

acoustic wave limit is 1%, and 20% if the limit is 0.2% which is the limit used in Ref. [7].

Thus, less stringent limits on the acoustic wave amplitude are required if the self-consistent

plasma profiles with gradients in the electron temperature, density, and flow velocity are

used.

B. Krypton plasma modeling

1. 351 nm light scattering

In agreement with the gain calculations presented in the previous sections, SRS is much

smaller than SBS. In the simulations without any nonlinear limits (other than pump deple-

tion), the SBS reflectivity is ∼ 20% for 351nm light for fill densities between .04− .08N351
c for

plasma conditions computed by HYDRA 900 ps after the heater beams turned on. The time-

averaged SBS reflectivity into the FABS detector at OMEGA is about ten times smaller. If

there were much SBS that was scattered outside the FABS detector, this calculation might

be within the error of the measurement. However, the calculations do not support such an

interpretation as there is little self-focusing of the incident light that would cause backscatter
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at angles outside the FABS. The simulation predicts more than 80% within the FABS.

Using the same phenomenological model for these Krypton gasbags that was used for

CO2 bags, we find that SBS is strongly reduced. With the 1% limit on the acoustic wave

amplitude at all Krypton fill densities, the computed SBS reflectivity agrees reasonably well

with the time-average measurements as shown in Fig. 12. The simulated reflectivity increases

with gas-fill density in part because the nonlinear limit on the acoustic wave amplitude is

proportional to the local electron density. A different nonlinear model might show different

scaling behavior.

2. 527 nm light scattering

For 527nm light, the SBS reflectivity without limits on the acoustic wave amplitude

decreases from about 15% at the lowest fill density to about 8% at the higher fill densities

as shown in Fig. 13. This trend is presaged by the variation of the 527 nm gain with fill

density at constant laser power shown in Fig. 10. The actual laser power for the 4%N351
c

shot was about 30% of the other shots and the pF3d simulation was done with the actual

power. When the acoustic wave amplitude is limited with the same model as with the 351

mn light, the SBS reflectivity is decreased at all densities and is in good agreement with the

time-average data. However, when one compares the simulated spectrum of the scattered

light to the measured spectrum, the agreement for 527 nm light is not very good because the

simulated shift corresponds with the peak of the gain whereas the measured spectral peak

does not (see Table III). The measured 527 nm reflectivity at the shift corresponding to the

peak gain is much smaller than the simulated one. Moreover, the simulated reflectivity at

the shift corresponding to the peak of the measured spectra is too small. The most likely

resolution of both discrepancies is the same, three dimensional simulations that correctly

include the power in intense speckles which would simultaneously increase the SBS in the

expanding plasma and cause the incident light to spray. The spraying has the additional

effect of lowering the intensity in the plateau and reducing the SBS there. In Sec. VI, a few

three dimensional simulations of 527 nm light propagating through the plasma expansion

will test this ansatz.
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3. interpretation of 351 nm SBS simulations

The time dependence of the 351 nm light reflectivity and transmission predicted by the

pf3d simulations for the lowest density Kr fill is shown in Fig. 14 for a interaction beam

pulse that turns on instantly at 0.5 ns and has constant power for 1 ns. The transmission

increases as the electron temperature increases and the length of the plateau decreases with

time until the heater beams turn off. After that time, the electron temperature decrease

increases the absorption. The model developed for the SBS reflectivity from CO2 gasbags

at Nova where the acoustic wave amplitude was nonlinearly ”clamped” at amplitude nd

was R = [0.88ω0Lnd/4vgnc]
2 where L was the plasma plateau length.[7] This formula is

valid in the plateau since, for 351 nm light, the absorption length La = c/(neνei/nc) > L.

The reflectivity slowly decreases as the length of the gain region, L, decreases. In pf3d

simulations, it takes ∼ 100 ps for the SBS to reach a saturated value but the reflectivity is

plotted at the time that the HYDRA plasma parameters are valid. The actual incident laser

interaction pulse, a typical one is shown in Fig. 2, takes 200 ps to reach full power. These

effects and the detector response time can explain the difference between time dependence

of the pf3d simulated reflectivity and the measured reflected power.

For the simulation parameters that best match the data, the influence of the blast wave

absorption on the reflectivity is examined by computing the reflectivity of the plateau region

as the ratio of the reflected light before transmission through the blast wave to the incident

light after transmission through the blast wave. This ”plateau” reflectivity is compared

with the the ratio of the reflected light to the incident light in Fig. 15. At low density

the difference between these two reflectivities is small. As the fill density increases, the

differences increase. For 527 nm light most of the reflectivity at the higher density comes

from the expanding plasma region where the intensity is highest. For 351 nm light, on

the other hand, the reflectivity is higher computed inside the plasma than outside because

absorption of the reflected light in the blast wave is more important than the extra gain

experienced by the reflected light in the expanding region.

The blast wave absorption is not the sole reason that the 351 nm light reflectivity is small

in Krypton plasmas. To examine other reasons, the reflectivity from a 7% Krypton fill is

examined in detail. First, a simulation with a uniform density of .065N351
c and a uniform

electron temperature of 4 keV with a incident laser beam of intensity 8 × 1014W/cm2 is
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considered with the 1% limit on the acoustic wave imposed. Nearly seventy percent of the

light is reflected. Even if the incident intensity is lowered to 5× 1014W/cm2 to account for

the 40% absorption in the blast wave, the plateau reflectivity is 60-65%. With account of

the absorption of the backscattered light in the blast wave, the predicted reflectivity from

this calculation would be smaller, 22%, but still higher than measured. If the actual plasma

parameter profiles of the Hydra simulations without the blast waves are used, the plateau

reflectivity drops to 25-30% which would still project to a larger reflectivity, namely 9-11%,

than measured or simulated when the Hydra profiles with the blast waves are included,

namely 3-5%. The last ingredient that lowers the reflectivity to the full simulation value

is the temporal incoherence acquired by the laser beam as it propagates through the ex-

panding plasma and the blast wave before it enters the plateau region where backscatter

occurs. When one simulates this laser light incoherence by using a model of SSD with 1Å of

bandwidth at 351 nm, the ”plateau” reflectivity is 10% which agrees with the full simulation

value of 3.6% when the blast wave absorption is accounted for.

With the imposed SSD, the simulations showed that the backscatter is less phase cor-

related with the incoming light (than without SSD) within a few hundred wavelengths of

the simulation boundary, that is, within the first speckle length. The reflected light and the

associated acoustic wave also grow less rapidly over this length in the full simulation and in

the simulation with imposed SSD (than in the simulation without SSD).

VI. THREE DIMENSIONAL SIMULATIONS OF SBS IN EXPANDING PLASMA

The 2D simulations of the 351nm SBS from both Krypton and CO2 plasma showed the

spectral redshift of ∼ 7Å expected from the gain calculations. However, the 2D simulations

of the 527nm SBS from Krypton plasmas differed from the data in two respects that are

resolved by 3D simulations. The two differences are that the model shows a gradual decrease

of SBS with gas fill density and a redshift of 10 Å while the data shows an increase of SBS

and a redshift that decreases with gas fill density. The latter difference is a more important

problem to address because it calls into question the value of the gain as a predictor of

reflectivity. The key differences between 351nm and 527nm light propagation are the gains

for SBS and filamentation are greater than one only for 527nm light in the plasma flowing

opposite to the laser propagation direction. Because of the strong velocity gradient and
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the weak linear damping, the SBS in this region occurs in a distance less than a speckle

(hotspot) length. Thus the theory of stimulated backscatter by independent hot spots is

applicable in which the reflectivity of each hotspot is averaged over the distribution function

of hotspot intensities.[37] The SBS reflectivity becomes R ∼
∫

dIR(I)P (I) where R(I) is

the reflectivity of the hotspot of intensity I and P(I) is the probability distribution. In the

case considered here where the gain for the average intensity is ∼ 4, strong SBS is expected

for hotspots with intensity more than 5× the average where about 4% of the incident beam

energy resides. This 1D independent-hot-spot model has been improved by consideration of

mitigating effects of diffraction and gain narrowing[38] both of which lower the reflectivity

of the individual hotspot. These effects are naturally included in pF3d simulations.

Because self focusing of the speckles is transferring power to higher intensity, the amount

of power available for strong SBS is increased. Because the 2D simulations under-populate

the distribution of hotspots with higher than average intensity, filamentation and SBS in the

plasma expansion are weaker in 2D than 3D. In Fig. 16, the distribution of intensities from

2D and 3D pF3d simulations for the conditions pertinent to 7% Kr fill at 900 ps are shown

that confirm these assertions. The transverse size and resolution of the simulation are the

same for 2D and 3D but the number of speckles in 3D is far greater. The figure shows that

our 2D simulations under-represent the power at high intensity and that speckle self focusing

significantly increases the power at intensities more than 5× the average intensity. In this

example, only ponderomotive self focusing was included. For the transverse wavenumber

typical of the incident beam speckles, k = k0/2f , the electron slowing down mean free path,

λe, satisfies kλe ∼ 10 which is in the range where thermal self focusing will enhance the

focusing.

In these simulations, the SBS reflectivity was 2-10 % with a wavelength shift of the

scattered light from the incident light, ∆λ = λs − λ0 ∼ 2 − 5Å where amount of scatter

and wavelength shift depended on the strength of self-focusing and the nonlinear limits on

the acoustic wave. With self focusing turned off by neglecting light refraction, the total

reflectivity was R = 2% and the shift was ∆λ = 6Å. With only ponderomotive focusing

(the case shown in Fig. 16), R ∼ 7% and the shift was ∆λ = 4Å with a FWHM of 6 Å.

Most of the reflected light is not confined to the incident light cone. The light reflected into

the solid angle of the incident light is 0.1% and 0.35% respectively. The backscatter of the

light into a large solid angle is partly explained by diffraction after gain narrowing (the gain
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is larger for light at the center of the spot) but mostly by the fact that the linear gain spatial

resonance width (∼ πνaLv/ωa ∼ 6 × 10−4cm) is so small that light scattered by up to 30◦

will be fully amplified.

In the simulations discussed in the previous paragraph, the acoustic wave was not non-

linearly limited. With ponderomotive self focusing and a nonlinear limit of 0.1Ne, the total

reflectivity is 5% with 1% backscattered into the solid angle of the incident light and a wave-

length shift of 5Å. This result is close to the experimental result in Fig. 4 but the redshift is

bigger than the measured shift of 1.4Å given in Table I. With the addition of thermal self

focusing to ponderomotive, enough power is concentrated in high intensity hotspots that 8%

SBS occurs at a lower density where the Doppler shift to the blue is bigger (∆λ ∼ 2− 5Å ).

With a nonlinear limit on the acoustic wave, the SBS backscattered light is confined within

a small solid angle such that 2% of the incident light (1/4 of the total SBS) is backscattered

within the incident light cone angle.

One nonlinear effect that might limit the SBS reflectivity is a nonlinear frequency shift

of the acoustic wave. Nonlinear ion frequency shifts in this case where the phase velocity is

much larger than the ion thermal speed are negligible. Electron nonlinear frequency shifts

lead to a higher frequency acoustic wave and thus a bigger redshift in the scattered light

and a bigger difference between the modeling and the measurement.

As a further check on our modeling, we simulated in 3D the propagation of 527 nm light

without nonlinear limits on the acoustic wave through the expanding plasma of a C3H8

gasbag filled to .065N351
c . Because the C3H8 acoustic wave damping is 10× larger than

that for CO2, the resonance width is ∼ 0.06cm which is comparable to the initial speckle

length. The linear gain is similar to that for Krypton and CO2 in this region because the

velocity gradient is the dominant factor limiting the gain. The simulations show insignificant

SBS because filamentation reduces the speckle length to less than the resonance width so

that gain is averaged over several speckles. This result agrees with the C3H8 experimental

measurements of SBS spectra from gasbags.

It remains to explain why the SBS from the plateau is weaker experimentally than in

the 2D simulations. Filamentation and stimulated forward SBS of the 527 nm light provide

the answer. The 3D simulations of 527 nm light propagation in 7% Kr fill at 900 ps with

thermal effects included show the beam focuses in the region where the flow is nearly sonic

(Vflow ∼ 3×107cm/s) and then sprays into a f/2.5 cone as it propagates to the region where
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the flow reverses direction (Vflow = 0). Then it is strongly absorbed by the blast wave. This

spray was modeled in 2D by propagating an f/2.5 beam through the blowoff plasma, the

blast wave, and the plateau with its focus where the beam sprays in the 3D simulations.

The total SBS from this simulation is 1% but it is spread over the f/2.5 cone angle. The SBS

into the FABS (what is measured in the experiment) from this calculation is 0.1%, much

smaller than the 3% from the 2D simulations that did not account for beam spray and in

better agreement with the data.

VII. CONCLUSIONS

We have explained why the SBS is lower for high-Z gas fills than for CO2 fills of similar

densities and temperatures with the same laser illumination. An ad hoc nonlinear limit on

the acoustic wave amplitude was needed in both CO2 and Krypton plasmas to reproduce the

actual reflectivity values but its form was simple and independent of charge state.Nonlinear

effects such as frequency detuning from electron trapping, two-ion wave decay, or generation

of ion acoustic wave harmonics may be the nonlinearities responsible [8, 23] for keeping the

ion wave amplitudes lower than linear theory with pump depletion. In these simulations,

the best agreement with the measured reflectivity required a limit of 1% on the amplitude

of the acoustic wave which is smaller than the linear threshold for two-ion wave decay by

factor of 2-4. This threshold depends on the value of the electron Landau damping used.

Kinetic nonlinearity may lower this value if the bounce frequency of an electron trapped

in the acoustic wave satisfies ωBe > νLe which occurs for very small values of the acoustic

wave amplitude. Here, νLe is the linear electron Landau damping rate for a Maxwellian

plasma. The trapping of electrons also leads to a nonlinear frequency shift[27, 36] that

might detune the SBS resonance in a similar manner to the ion trapping induced frequency

shifts simulated [8, 9] and measured.[21]

This analysis shows that the nonlinear physics determining the amount of SBS when

ZTe/Ti � 1 is probably the same for CO2 plasmas as it is for high Z plasma such as gold

and Krypton because one can successfully model the SBS reflectivity of CO2 and Krypton

filled gasbags over a wide range of density and two different laser wavelengths with the

same imposed limit on the acoustic wave amplitude. The lower than CO2 measured SBS

reflectivity from Krypton and Xenon-filled gasbags is primarily a result of strong inverse
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bremsstrahlung in high-Z plasmas.

By detailed analysis of the 2D simulations of the 351 nm propagation, we showed that

induced temporal incoherence on the laser beam also plays a role in modeling the SBS.

The laser light acquires this incoherence by propagating through a time-varying, expanding

plasma and blast wave where the SBS backscatter rate is small before encountering the

plateau region where the strong backscatter occurs. Also of some importance in controlling

SBS of 351 nm light in the plateau region are the temperature and density gradients which

are calculated by the radiation-hydrodynamic code, HYDRA.

The 2D simulations of the 527 nm light propagation were misleading because they under-

estimate the amount of filamentation and beam spray. As a result the calculated amount of

SBS in the blowoff plasma is too small and the amount from the plateau is too large. The

3D simulations model the SBS spectrum and the reflectivity well. This modeling also shows

the need, when analyzing NIF ignition designs, of considering the effect on the incident light

properties of the propagation through the intervening plasma and the role of self focusing

in increasing the power at high intensity.
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spectrometer

( ~79° to probe beam)

FIG. 1: The experimental setup for the Krypton-filled gasbag targets shot in Nov 2002 and June

2003 at the Omega Laser Facility
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FIG. 2: 351nm SBS spectra from the 0.06N351
c target. (left) The SBS streak spectra and (right)

the time dependence of the heater beams (dots), the 351nm interaction beam (dash-dot), and the

SBS backscatter (solid). The SBS light is redshifted by 6.5Å from the interaction beam.
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FIG. 3: Thomson scatter streaked spectra from the 0.06N351
c target. (a) The TS streak spectra,

(b) the spectrum at 1.2 ns (squares) and a fit (Te = 2keV) to the spectrum (solid line), and (c) the

spectrum at 0.5-0.8 ns (squares) and a fit (Te = 3.5keV) to the spectrum (solid line). The bright

unshifted light is stray light.
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FIG. 4: The time integrated SBS from Krypton gas filled targets as a function of the electron

density of the fiil in units of the 351 nm critical density for 527 nm and 351 nm interaction

beams. The 351 nm data at .06N351
c is from a June 2003 shot which used a different heater beam

configuration. The interaction beam power of the lowest density 527 nm shot was about 1/3 of the

rest of the shots.

FIG. 5: The plasma electron density (a), the electron and ion temperatures (b), and the axial flow

velocity (c) for the 4%N351
c Krypton fill (solid lines) and for the 4%N351

c CO2 fill (dashed lines) at

900ps into the 351nm wavelength heater laser pulse.
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FIG. 6: The laser intensity focused at z = 0 vs distance into the bag for a 527nm laser beam

into a 4% Krypton fill, a 351nm laser beam into a 4% Krypton fill, a 527nm laser beam into a

4% CO2 fill, and a 351nm laser beam into a 4% CO2 fill. The vacuum laser intensity at focus is

8× 1014W/cm2.
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FIG. 7: The laser power transmission through the blast wave as a function of the electron density

in units of the 351nm critical density for 351nm (blue squares) and 527 nm (green circles) incident

laser light.
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FIG. 8: The local acoustic wave frequency for the Krypton 4% N351
c gasbag at 900ps as a function

of z for the 351nm wavelength interaction beam and (a) when kλde is not included in the dispersion,

(b) when kλde is included in the dispersion, and (c) when the Doppler shift of the flow is included

and for the 527nm wavelength interaction beam when (d) kλde is not included in the dispersion,

(e) kλde is included in the dispersion, and (f) when the Doppler shift of the flow is included.
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FIG. 9: The filamentation gain parameter Gf (see Eq. (12)) for 527nm light incident on a 0.07N351
c

Krypton gasbag at 500ps (black line), 700ps (red line), 900ps (dark blue line), and 1100ps (light

blue line). The electron density normalized to 1× 1021cm−3 at 1.1ns is also shown
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FIG. 10: The peak SBS gain for 527 nm (green circle) and 351 nm light (blue square) for constant

incident power and focal spot size as a function of the Krypton gas electron density divided by

the 351 nm critical density. The gain without the blast wave absorption or additional gain in the

expanding plasma (open diamond) is also plotted. The peak gain for 351 nm light for a CO2 fill

with Ne/Nc(351) = .04 is about 30.
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FIG. 11: A two dimensional slice of the simulated laser intensity propagated through a 0.07N351
c

Krypton-gas-filled bag for (a) 351nm and (b) 527 nm light. The overdrawn line is the laser power.
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FIG. 12: The 351 nm light SBS reflectivity computed by pf3d simulations as a function of Krypton

fill gas density and the measured reflectivity into the FABS detector at OMEGA. The simulation

results are solid marks; the data are open marks.
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FIG. 13: The 527 nm light SBS reflectivity computed by pf3d simulations as a function of Krypton

fill gas density and the measured reflectivity into the FABS detector at OMEGA. The simulation

results are solid marks; the data are open marks.
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FIG. 14: The 351 nm SBS reflectivity and incident light transmission computed by pf3d simulations

for the 4% Krypton fill density for the plasma conditions at 200 ps intervals. The simulations were

100-200 ps in duration.
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FIG. 15: The 351 nm and 527 nm SBS reflectivities computed by pf3d simulations versus Kr

fill density for the plasma conditions at 900 ps. Rin is the reflectivity computed by dividing the

reflected light energy before transmission through the blast wave by the laser light energy after

transmission through the blast wave. Rtot is computed by dividing the reflected light energy after

transmission through the blast wave by the incident light energy.
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FIG. 16: The distribution of intensities for a 3D simulation of 527 nm light incident on a 7% Kr

fill density for the plasma conditions at 900 ps (a) for the initial axial position and (b) for axial

postion after focusing. Curve (c) is the initial distribution of intensities for a 2D simulation.
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