Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material

PDF Version Also Available for Download.

Description

The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of ... continued below

Creation Information

Clarke, Shaun D; Flaska, Marek; Miller, Thomas Martin; Protopopescu, Vladimir A & Pozzi, Sara A June 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a host of real-world scenarios of interest to nonproliferation and homeland security. Due to the multistep procedure of the MCNPX/MCNP-PoliMi code system, the analysis of somewhat modular - meaning that changing details such as the detector type, position, or surroundings does not require a re-calculation of the source-target interactions. This feature allows for efficient parametric analysis of numerous system parameters without recomputing the constant source-target behavior. Such efficient analysis mechanisms could prove invaluable in the design and future deployment of an active interrogation detection system.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2007/079
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/931590 | External Link
  • Office of Scientific & Technical Information Report Number: 931590
  • Archival Resource Key: ark:/67531/metadc899097

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 6, 2016, 1:40 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Clarke, Shaun D; Flaska, Marek; Miller, Thomas Martin; Protopopescu, Vladimir A & Pozzi, Sara A. Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material, report, June 1, 2007; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc899097/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.