On the escape of particles from cosmic ray modified shocks

PDF Version Also Available for Download.

Description

The solution of the problem of particle acceleration in the non-linear regime, when the dynamical reaction of the accelerated particles cannot be neglected, shows strong shock modification.When stationarity is imposed by hand, the solution may show a prominent energy flux away from the shock towards upstream infinity. This feature is peculiar of cosmic ray modified shocks, while being energetically insignificant in the test particle regime. The escape flux appears also in situations in which it is physically impossible to have particle escape towards upstream infinity, thereby leading to question its interpretation.We show here that the appearance of an escape flux ... continued below

Creation Information

Caprioli, D.; /Pisa, Scuola Normale Superiore; Blasi, P.; /Fermilab, /Arcetri Observ.; Amato, E. & Observ., /Arcetri July 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The solution of the problem of particle acceleration in the non-linear regime, when the dynamical reaction of the accelerated particles cannot be neglected, shows strong shock modification.When stationarity is imposed by hand, the solution may show a prominent energy flux away from the shock towards upstream infinity. This feature is peculiar of cosmic ray modified shocks, while being energetically insignificant in the test particle regime. The escape flux appears also in situations in which it is physically impossible to have particle escape towards upstream infinity, thereby leading to question its interpretation.We show here that the appearance of an escape flux is due to the unphysical assumption of stationarity of the problem, and in a realistic situation it translates to an increase of the value of the maximum-momentum when the shock velocity is constant. On the other hand, when the shock velocity decreases (for instance during the Sedov-Taylor phase of a supernova explosion), escape to upstream infinity is possible for particles with momenta in a narrow range close to the maximum momentum.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-08-257-A
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 936350
  • Archival Resource Key: ark:/67531/metadc899043

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 30, 2016, 2:42 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Caprioli, D.; /Pisa, Scuola Normale Superiore; Blasi, P.; /Fermilab, /Arcetri Observ.; Amato, E. & Observ., /Arcetri. On the escape of particles from cosmic ray modified shocks, article, July 1, 2008; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc899043/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.