Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation
PDF Version Also Available for Download.
Description
Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in …
continued below
Publisher Info:
Los Alamos National Laboratory (LANL), Los Alamos, NM
Place of Publication:
Los Alamos, New Mexico
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this poster.
Follow the links below to find similar items on the Digital Library.
Description
Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in solution is present as hexavalent plutonyl, PuO2 2+.
This poster is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Boukhalfa, Hakim; Icopini, Gary A.; Reilly, Sean D. & Neu, Mary P.Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation,
poster,
April 19, 2007;
Los Alamos, New Mexico.
(https://digital.library.unt.edu/ark:/67531/metadc898909/:
accessed March 30, 2023),
University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.