Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation

PDF Version Also Available for Download.

Description

Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in … continued below

Creation Information

Boukhalfa, Hakim; Icopini, Gary A.; Reilly, Sean D. & Neu, Mary P. April 19, 2007.

Context

This poster is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times. More information about this poster can be viewed below.

Who

People and organizations associated with either the creation of this poster or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this poster. Follow the links below to find similar items on the Digital Library.

Description

Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium in solution is present as hexavalent plutonyl, PuO2 2+.

Source

  • Annual Environmental Remediation Science Program (ERSP) Principal Investigator Meeting, April 16-19, 2007, Lansdowne, VA

Language

Item Type

Identifier

Unique identifying numbers for this poster in the Digital Library or other systems.

  • Report No.: CONF-ERSP2007/1024817
  • Office of Scientific & Technical Information Report Number: 925441
  • Archival Resource Key: ark:/67531/metadc898909

Collections

This poster is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this poster?

When

Dates and time periods associated with this poster.

Creation Date

  • April 19, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • May 9, 2019, 2:17 p.m.

Usage Statistics

When was this poster last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 24

Interact With This Poster

Here are some suggestions for what to do next.

Enlarge

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Boukhalfa, Hakim; Icopini, Gary A.; Reilly, Sean D. & Neu, Mary P. Stabilization of Plutonium in Subsurface Environments via Microbial Reduction and Biofilm Formation, poster, April 19, 2007; Los Alamos, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc898909/: accessed March 30, 2023), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen