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Abstract  

The commonly used current-voltage characteristics are found inadequate for 

describing the pulsed nature of the high power impulse magnetron sputtering (HIPIMS) 

discharge, rather, the description needs to be expanded to current-voltage-time 

characteristics for each initial gas pressure.  Using different target materials (Cu, Ti, Nb, 

C, W, Al, Cr) and a pulsed constant-voltage supply it is shown that the HIPIMS 

discharges typically exhibit an initial pressure dependent current peak followed by a 

second phase that is power and material dependent.  This suggests that the initial phase of 

a HIPIMS discharge pulse is dominated by gas ions whereas the later phase has a strong 

contribution from self-sputtering.  For some materials the discharge switches into a mode 

of sustained self-sputtering.  The very large differences between materials cannot be 

ascribed to the different sputter yields but they indicate that generation and trapping of 

secondary electrons plays a major role for current-voltage-time characteristics.  In 

particular, it is argued that the sustained self-sputtering phase is associated with the 
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generation of multiply charged ions because only they can cause potential emission of 

secondary electrons whereas the yield caused by singly charged metal ions is negligibly 

small.  
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I. INTRODUCTION 

High Power Impulse Magnetron Sputtering (HIPIMS) is an emerging physical 

vapor deposition (PVD) technology.  It is characterized by a high pulse power density at 

the sputtering target, which is typically two orders of magnitude greater than the average 

power density.  We adopt the term HIPIMS, as opposed to high power pulse magnetron 

sputtering (HPPMS), because the latter is inconsistently used for either HIPIMS-like 

systems or for medium frequency pulsed sputtering with very large area targets.  In the 

latter case, even as the power is high, the pulse power density does not much exceed the 

average power density.   

With greatly enhanced power density, ionization of sputtered atoms can occur to a 

much larger extent.  The presence of ionized sputtered material is of great importance to 

some PVD applications such as the filling of trenches and vias of semiconductor 

microprocessors.  Additionally, HIPIMS may be used for applications that are 

traditionally served by cathodic arc plasma processing such as substrate etching1 and film 

deposition.2  Ionization of the sputtered material enables the processes of self-ion-assisted 

deposition and energetic condensation3-5. 

The roots of ionized sputtering may be traced back to research in Japan some 30 

years ago when Hosokawa and coworkers noticed a discrepancy between the measured 

and calculated copper and aluminum deposition rates.6  They estimated that, in the case 

of aluminum, about 18% of the ion current to the target are due to ionized sputtered 

atoms, which cause self-sputtering.  A few years later, they published a condition for 

sustained self-sputtering, i.e., a condition for sputtering that exclusively relies on self-

sputtering.  Argon, or a similar gas, is only needed to get the process started and may well 
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be shut off afterwards.7  The sustained sputter process can operate with ionized metal 

only when the power density is very high8 (typically several 100 W/cm2).  The condition 

for sustained self-sputtering reads  

 1SSαβγ ≥  (1) 

where α  is the ionization probability, β  is the probability that a sputtered and ionized 

atom will return to the target, and SSγ  is the self-sputter yield.  Sinc 1e α <  an 1d β < , 

the conditi 1on SSγ >  is necessary but not sufficient for sustained self-sputtering. 

Sustained self-sputtering has been demonstrated by several researchers but only 

for a very limited number of materials.  For example, Posadowski and Radsimski9 

showed that the principle works for copper and silver, which are metals of very high self-

sputter yield.  The experiments showed that sustaining the self-sputtering without 

processing gas required operation with a high current density on the target.  This 

suggested to go to even higher current density (or, equivalently, power density), which is 

only possible by using pulses in order to not exceed the average power rating of the 

magnetron.   

At a 1996 symposium in Berkeley, Sergey Bugaev and coworkers10 reported 

about pulsing a filament-assisted, hollow cathode magnetron to high power, with a pulse 

voltage up to 800 V and a peak current of 450 A, leading to a deposition rate of 11 

μm/min for copper.  In 1999, Kouznetsov and coworkers11 published their much-cited 

work in which they explicitly outline the possibility to operate a planar magnetron at 

very high power density, with peak power soon to approach the 1 MW level, leading to 

deposition of the target material from the plasma phase, as opposed to from the neutral 

vapor phase of sputtered atoms.  Although the number of papers in the field of HIPIMS 
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has grown since then, many aspects of the complicated physics have not been fully 

understood.   

In the following we report on experiments using a constant voltage HIPIMS 

power supply and focus on measuring and interpreting the current-voltage characteristics 

for a number of different target materials.  We will show that the current-voltage 

characteristic cannot be reduced to a single curve representing current-voltage pairs for 

given conditions (pressure, geometry, etc.) but rather one needs to map to the current-

voltage-time space for each of those conditions.  This can be accomplished by providing 

a set of time-dependent current curves, each taken at a fixed voltage.   

 

II. EXPERIMENTAL 

The experiments were carried out using a 2-inch (5 cm) planar, balanced 

magnetron.  The targets were ¼ inch (6.25 mm) thick; the magnetic field induction at the 

center of the target surface was 64 mT and lower elsewhere; the diameter of the circular 

racetrack was 25 mm.  We intentionally used such a small magnetron because it allowed 

us to achieve very high power density.  The peak power density was up to 5 kW/cm2 

averaged over the whole target area, and even exceeded 10 kW/cm2 when considering the 

more physically relevant, effective racetrack area of about 10 cm2 or less.   

The power was supplied by a slightly modified SPIK2000A pulse power supply 

(Melec GmbH) operating in the unipolar negative mode at constant voltage.  A great 

feature of this pulser is the ability to freely select the pulse length.  The short pulse limit 

is given by the pulser to 5 μs, and the long pulse limit by the capacitively stored energy, 

which practically means several milliseconds (one would see a large voltage droop, 
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especially at high current).  We are especially interested in pulses longer than 100 μs 

because this allows the discharge to evolve into the metal discharge phase, as we will 

discuss.  However, the allowable average power to the magnetron of 1 kW, determined 

by cooling, was a limiting factor that needed to be taken into account.  Hence, long pulse 

operation necessarily implied to have long pauses between pulses (typically 20 ms).  The 

nominal voltage of the pulser was adjustable up to 1000 V.  The arc threshold was set to 

120 A.  If the current exceeded this value, the supply’s arc suppression mechanism would 

be triggered, rapidly terminating the pulse-driving voltage.  We used a pulse length of 

typically 400 μs.  In the case of Ti and Nb and high applied voltage, we had to use shorter 

pulse lengths to protect the equipment. 

Pure argon gas was supplied near the target, establishing an operational pressure 

that was adjusted by the specific combination of gas flow rate (up to 100 sccm) and 

pumping speed (cryogenic pump and adjustable valve).  At fully opened valve, the 

pumping speed was 1500 l/s for air, and the chamber base pressure was about 10-4 Pa.  

The total pressure was monitored by an MKS Baratron® gauge.  

The discharge current was monitored using a current transformer (Pearson™ 

model 301X, 0.01 V/A, 2 MHz bandwidth); and the voltage at the target was measured 

with a 1000:1 voltage divider (Tektronix 6015A, 75 MHz bandwidth).  The data were 

recorded on a digital storage oscilloscope (Tektronix TDS5104B) in sample mode. 

The ion flux was measured using a differentially pumped mass and energy 

analyzer (EQP 300 by HIDEN Ltd.); the entrance aperture was at ground potential with 

an orifice of 100 μm diameter.  The target-orifice distance was 10 cm.  The total ion 
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current was recorded using an ion collector of about 100 cm2 area placed at 20 cm 

distance from the target; the collector was biased to -50 V with respect to ground. 

The target materials were selected for their relevance in a number of applications 

as well as to investigate diverse set of materials that would allow us to derive material-

specific conclusions.   

 

III. RESULTS 

A. Copper 

Copper was selected as a material of primary interest because of its relevance for 

semiconductor metallization and because it has one of the highest sputter yields of all 

metals (only exceeded by silver).  The results for copper at different constant target 

voltage are compiled in Fig. 1.  As the pulsed voltage exceeds 500 V, one can clearly see 

the development of an initial current peak of several amperes.  Many other HIPIMS 

systems use relatively short pulses of typically only 10-50 μs, and therefore this initial 

peak is seen as the main feature.   

The character of the ion current shape changes drastically when the applied 

“driving” voltage is increased by just an astonishingly small amount, in the example of 

Fig. 1 from 530 V to 535 V.  The current is not reduced anymore, as it was at relatively 

low voltage, but rather a new process compensates the current reduction.  The narrow 

voltage interval where the change is observed is well reproducible.  This was checked by 

setting the voltage higher and lower than about 535 V several times.   

Given the overwhelming evidence of research on HIPIMS by optical and mass 

spectroscopy,12-15 this process can be associated with the appearance of large amounts of 
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copper neutrals and ions, displacing argon.  At voltages of 530 V and higher, the 

sputtered metal starts to greatly affect the discharge, and the current jumps because the 

feedback loop, as described by Eq.(1), appears to have reached the unity threshold.  

Another argument for this interpretation is the pulse shape obtained at different 

argon gas pressures.  Fig. 2 shows that the initial peak increases with argon pressure 

whereas the current level later in the pulse is practically independent on the initial gas 

pressure.  Fig. 3 shows an enlarged view of the curve for 0.44 Pa, which later will be 

discussed in greater detail.  

Of great interest is the flux of ions that actually arrives at the substrate.  Fig. 4 

indicates that while the metal phase started to be important at 535 V (Fig. 1), we observe 

a large increase in ion flow only at higher discharge voltages (and related higher 

currents).  The ion current collected at 20 cm distance from the target is very small at low 

driving voltage; it shows a remarkable increase after the discharge becomes dominated by 

metal; and it becomes disproportionately greater at higher driving voltages.   

 

B. Titanium 

Based on the sputter yields of Ti and Cu, Fig. 5, one would expect that less titanium 

atoms are supplied to the discharge plasma, and that titanium would exhibit the strong 

metal plasma character at higher power or later times compared to copper.  As shown in 

Fig. 6, this was not the case.  At low voltage, the current shapes for the Cu and Ti targets 

are similar, namely they show a peak at about 50 μs after the initial current rise.  It is 

typical that the initial current rise is delayed by 50 μs or more with respect to the 

application of the voltage, which defines the time = 0.  The current amplitude with a 
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titanium target is higher than with a copper target, which points to the importance of 

secondary electron emission (SEE) and ionization caused by it.   

In the transitional region at about 590 V, when the discharge current tends to be 

much higher after the initial peak, the current pulse form is not stable and reproducible.  

Instead, pulses may be either still of the low-current type or of the high current type, and 

in some cases the current shape jumps in between these extremes.  Each curve of Fig. 6 is 

a single pulse sample, and in the transitional region more than one curve for a given 

voltage is shown to illustrate the great variations in the current-voltage-time space.   

Fig. 7 shows some measurements using the HIDEN energy and mass analyzer.  The 

instrument’s orifice was placed at 10 cm distance from the target, and the influx was 

integrated over 50 μs HIPIMS pulses.  Despite the relatively short – by the standards of 

our investigation – pulse length we can clearly see the appearance of titanium ions, 

including Ti2+.  Note that even doubly charged argon ions are detected.  One can also see 

the rarefaction effect by the fact that the total ion count rate is reduced when the 

discharge current exceeded 10 A.   

 

C. Niobium 

Like titanium, the set of curves describing the current evolution for the niobium 

target indicates that high currents are reached readily albeit the onset of the high current 

occurs at even lower voltages (Fig. 8), which might be affected by the fact that this target 

was only 1/8 inch (3.1 mm) thick and therefore the magnetic field on the target surface 

and the sheath and presheath region was higher.  At about 500 V, the discharge jumps to 

a much higher current at the usual initial peak.  In fact, when the voltage was set to 550 
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V, the current increase was so dramatic that the power supply’s arc suppression 

interpreted the current rise as an arc, temporarily terminating the voltage.  After a very 

short waiting period the system applied the voltage again only to find that the current 

rises very fast.  By the time the second pulse approached the current limit, the overall 

designated pulse length of 400 μs was reached.  This behavior was reproducible.  Given 

the current limitation of the power supply it was not possible to go the higher voltages for 

the niobium target. 

 

D. Carbon (Graphite) 

The other extreme, compared to niobium, was the behavior of graphite (Fig.9).  

Here, the current curves are essentially characterized by the initial peak each exhibits.  At 

later times and higher voltages, one can see a slight increase in current but it remains at a 

relatively low level.  Unfortunately, it was not possible to utilize the full voltage 

capability of the power supply because the discharge tended to arc when the voltage was 

set to 800 V or higher.   

 

E. Tungsten 

The tungsten discharge shows a significant current level after the initial peak 

when the applied voltage was 700 V or higher (Fig. 10).  The most striking feature is the 

very steep increase of the initial peak, indicating the argon gas is very efficiently ionized.  

The transitional phase, where the high current level starts to appear, is around 700 V, and 

the curves at about 720 V vary from pulse to pulse. 
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F. Aluminum 

Aluminum generally shows a similar behavior, with the transition to a high level 

of current starting at about 550 V (Fig. 11).  The current at later times exceed the initial 

peak for voltages greater than about 700 Volt.  As with copper, the aluminum discharge 

pulses are characterized by a new equilibrium, as indicated by the constant current later 

in the pulse.  

 

G. Chromium 

The chromium current was low, reaching maximum values of only 7 A at 1000 V, 

the maximum voltage of the power supply.  This was surprising given the relatively high 

self-sputter yield of chromium.  The curves showed a couple of interesting features (Fig. 

12).  The current after the initial peak increased steadily when the voltage was increased, 

whereas the initial peak showed some unusual minimum at about 550 V.  This strange 

feature in the set of current curves was repeatedly reproduced several times by increasing 

and decreasing the voltage level.  Measurements of the ion flux using the HIDEN EQP 

spectrometer indicated the presence of singly and doubly charged chromium and argon 

ions (Fig. 7, bottom). 

 

IV. DISCUSSION 

A. Some basic physics of the HIPIMS discharge  

In the following discussion, we start with describing some general processes of 

the HIPIMS discharge, followed by a more specific discussion of the results described in 

section III. 
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To describe the pulsed discharge, we initially neglect the contribution of the 

magnetic field for the sake of simplicity.  Of course, the magnetic field plays a very 

important role, especially for the closed-drift motion of electrons, the probability of 

generating ions by impact ionization, and the ambipolar diffusion of plasma particles 

towards the substrate.  We will include these effects later in the discussion. 

As a negative voltage pulse is applied to the target, the development of the sheath 

depends strongly whether or not plasma is present.  If none is there, plasma and sheath 

will form with some delay via mechanisms that include electron-gas interaction and 

Townsend avalanches.  If plasma is already present when the voltage is applied, the 

initially very thin sheath responds with a characteristic time of the inverse electron 

plasma frequency, which is generally in the sub-microsecond regime.16  Therefore 

electron response and sheath development are determined by the pulse rise time rather 

than electron inertia.  The sheath expands further as the (argon) ions are accelerated 

towards the target surface; the sheath thickness asymptotically approaches a new 

equilibrium value.  If we take the Child law, which can be applied to determine the 

thickness of a collisionless sheath,17,18 we have 

 ( ) ( )
( ) ( )

1 42 3
0
2
0

3
4

sheath

e

V t
s t

e n t kT t
ε⎛ ⎞

= ⎜⎜
⎝ ⎠

⎟⎟ , (2) 

where 0ε  is the permittivity of free space, e is the elementary charge, k is the Boltzmann 

constant, sheathV  is the voltage drop in the sheath, n0 is the plasma density, and Te is the 

temperature of plasma electrons.  Figure 13 shows the Child sheath width for relevant 

voltage and plasma parameters.  The sheath is dynamic such that it is greatly dependent 
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on the sheath voltage and plasma density at the sheath edge, and to a lesser degree on the 

electron temperature.  

The sheath evolution is greatly affected by the pre-pulse plasma density near the 

target: in the case of widely spaced pulses, and the absence of a “keeping” plasma, the 

rise of current is often substantially delayed with respect to the applied voltage due to a 

statistical time lag for electrons to develop ionization avalanches and finally plasma (the 

delay exhibits a surprisingly high pulse-to-pulse reproducibility).  The example shown in 

the original Kouznetsov paper11 is typical for this situation.   

A low-power “keeping” discharge or operation at high duty cycles ensures that 

the applied HIPIMS pulse can immediately lead to a strong rise in discharge current 

because there are enough ions near the target available to be accelerated.  In contrast to 

conventional plasma immersion ion implantation (PIII) models,19 the plasma density is 

strongly dependent on the fluxes of secondary electrons and sputtered atoms coming from 

the target.  The sheath thickness is a complicated issue because the plasma evolves, too, 

and not just the sheath, and the magnetic field is changing the electron dynamics and 

thereby indirectly the ion dynamics. 

Ions impacting the target surface cause two main secondary processes: (i) 

emission of secondary electrons and (ii) sputtering of atoms.  Both processes deserve 

deeper considerations. 

Secondary electrons (SE) are crucial for maintaining the discharge because the 

secondary electrons gain energy by traveling through the electric field of the sheath; they 

can directly cause ionization via impact ionization or indirectly via heating of the less 

energetic electrons in the bulk of the energy distribution function (plasma electrons).   
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The trajectory of a SE is curved due to the magnetic field of the magnetron.  

Gyration starts immediately when the electron is leaving the target surface.  Using z as 

the coordinate normal to the target surface, the electron gyration radius is  

 ( ) ( ) ( )
2

2e em v z V z m
r z

eB eB
⊥= = e  (3) 

where me is the electron mass, ( )zν⊥  is the velocity perpendicular to the direction of the 

magnetic field,  is the corresponding energy (in volt), and B is the magnetic induction.  

As the electron moves in the electric field of the sheath, it will be accelerated and picks 

up energy in the first part of its cyclic gyration motion; the exact amount depends on the 

potential difference between target surface and the most distant point of the trajectory 

from surface (Fig. 14).   

eV

SEs emitted in the center of the racetrack, where the magnetic field is perfectly 

parallel to the surface, will complete only one-half period of a cycloidal motion and 

return to the target surface – they do not contribute to the discharge unless they 

experience a collision or transfer energy via collective processes.   

SEs emitted outside the very center of the racetrack can permanently escape from 

the target because of the tilt of the magnetic field relative to the surface.  Those SE will 

periodically gain and lose energy as the gyration occurs.  Their trajectory is cycloidal 

leading to the well known drift motion that is perpendicular to both the electric and 

magnetic field vectors (  drift20).  The curved shape of the magnetic field brings 

drifting electrons back to  their original position (provided no collisions occurred) and 

one obtains the closed-drift Hall current.  One should note that this drift applies to the 

×E B
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electrons only because the ions are too massive to be “magnetized,” i.e., their gyration 

radius (3) by far exceeds the sheath and presheath size.   

If one compares the Child sheath thickness (Fig. 13) and the gyration radius (Fig. 

14) one can see that both are comparable.  In fact, an SE leaves the surface with just a 

few eV and picks up energy but, for small magnetic field vectors tilts, it may stay in the 

sheath for some time.  This has interesting implications, namely, that (i) the positive 

space charge in the sheath is “diluted” by electrons, and therefore the actual sheath 

thickness is larger than the Child sheath approximation, (ii) collisions will occur inside 

the sheath, leading to the generation of ions and more electrons. 

SEs emitted far from the racetrack center will experience a significantly tilted 

magnetic field which allows them to readily leave the sheath and to become energetic 

electrons (up to the full sheath voltage).  They oscillate in the presheath plasma, each 

time reflected back into the presheath plasma when they reach the sheath edge.  Of 

course, since there is an appreciable electric field in the presheath, they also participate in 

the  drift, though at a much smaller drift velocity than the electrons that are still in 

the sheath.  Whether trapped in the sheath or oscillating in the presheath plasma, each SE 

will contribute to the generation of many ion-electron pairs. 

×E B

If an ion is formed within the sheath or presheath, it will be accelerated toward the 

target surface by the electric field (the return probability β  is close to unity) and it may 

cause further secondary electron emission and sputtering.  The yields for these processes 

depend on the kinetic and potential energy of the ion (projectile).  While the sputter 

yields can be readily calculated using for example the TRIM or SRIM codes,21 the yield 

of secondary electrons is a much more complicated issue.  Generally, one distinguishes 
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between kinetic and potential electron emission.  Much work has been done by Winter, 

Aumayr and Lakits22,23, and others24,25, and here we summarize their results in a very 

simplified manner.  Kinetic emission (KE) is dominant at about >300 eV/amu projectile 

energies (where “amu” stands for the atomic mass number of the projectile ion), i.e., 

much greater than the typical kinetic energies observed and expected in a HIPIMS 

discharge.  KE is subject to a classical threshold but emission is still observed down to 

the “apparent” threshold, which is all the way down to the ~10 eV/amu region.  However, 

the KE yield is then 10-3 or smaller and therefore negligible.  For the relevant low kinetic 

energies of HIPIMS ions, we need to consider the emission determined by the potential 

energy of the arriving ion projectile (potential emission, PE).   

PE requires that the potential (ionization) energy of the arriving ions exceeds 

twice the workfunction of the material φ .  Experimental data of the yields for various 

ions satisfy the fit24 

 ( )0.032 0.78 2PSEE iEγ φ= − . (4) 

The factor 2 arises from the fact that one electron is needed to neutralize the arriving ion 

and the second is the one that is emitted.  As we can see from Table I, singly charged 

metal ions do not satisfy the condition  

 0.78 2iE φ>  (5) 

as required by (4) in order to obtain any PE.  Hence, for a typical magnetron discharge, 

singly charged metal ions cause neither KE nor PE.  In contrast, Ar+ ions can cause PE 

due to its high ionization energy.  We will return to this point in section B when 

discussing specific results. 
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Much has been written about sputtering26-28 and ionized sputtering1,15,29.  For the 

latter, a key issue is to use process parameters and a suitable geometry such that the 

probability of ionization is high for the sputtered atoms before they reach the substrate.  

This is generally achieved by increasing the background gas pressure, making it likely 

that the sputtered atoms collide with gas, thereby slowing them down for a longer 

residence time in the plasma.   

Using z as the coordinate normal to the target surface, the flux of sputtered atoms 

from the surface is reduced by30 

 a ag a gd n dzσΓ = − Γ  (6) 

where agσ  is the cross section for atom-gas collision, and gn  is the gas density, with  

 g gn p kT= , (7) 

p is the pressure, and Tg the gas temperature.  If agσ  is independent of position, one 

obtains 

 ( ) ( ) ( )0 expa az agz λΓ = Γ −  (8) 

with the mean free path 

 1 g
ag

g ag ag

kT
n p

λ
σ σ

= = , (9) 

where we used the ideal gas equation (7).  The cross section agσ  is not precisely known 

for all the atom-gas combinations, but it is generally in the range , 

with the lower values at higher kinetic energy of the colliding particles.  Eq. 

20 2(10 40) 10 m−− ×

(9) includes 

the rarefaction effect, namely, as the local temperature increases during operation, the 
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local gas density decreases and the mean free path increases proportionally.  Fig. 15 

shows the mean free path assuming the gas at room temperature. 

At a typical pressure of, say, 1 Pa (7.5 mTorr), the mean free path of atoms is 

larger than the sheath thickness, and only a small fraction agf s λ≈  of sputtered atoms 

will be slowed by a collision in the sheath.  The important effect of collisions, apart from 

increasing the chance of ionization, is the feedback that slowed sputtered atoms can 

provide: they themselves can become part of the “gas” that can slow down sputtered 

atoms.  That means the gas density gn  in Eq.(6) is a highly dynamic variable, depending 

both on heating (rarefaction) and generation of sputtered, slowed atoms.  Clearly, these 

processes evolve during the pulse duration, and therefore the experiments were done with 

relatively long pulses, allowing us to detect material dependent features.   

 

B. Interpretation of the material and time dependent current-voltage characteristics 

The current at the target is generally composed of the ion current and secondary 

electron current, 

 ( ) ( ) ( )1 SE pot iI t Eγ⎡ ⎤= +⎣ ⎦ I t  (10) 

where SEγ  is the secondary electron yield, which depends mainly on the potential energy 

of the arriving ions.  The motion of ions is not very much affected by the presence of the 

magnetic field, and therefore one may approximate the ion current by the Bohm current31 

 ( )00.61i BohmI Qe n v dA= ∫ , (11) 

where Q  is the average charge state number; with the ion sound velocity (Bohm velocity) 

 Bohm e iv kT= m .   (12) 
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The integration in Eq.(11) is over the target area.  A typical feature of the current curves 

at low and moderate voltage (or, equivalently, power) is the appearance of the initial 

current peak, which can be ascribed to gas ion current and rarefaction due to gas 

heating.32  In a pulsed system like the HIPIMS system, we should expect strong pressure 

transients in front of the target,33 however, the processing chamber acts like a large 

“pressure reservoir,” thereby making the overall heating quasi-isobaric, i.e., after a spike 

the pressure returns to the chamber pressure.  If we use the ideal gas equation (7) and 

Dalton’s law, 

 p n kTα α
α

=∑ , (13) 

where the summation is over all kinds of particles α , we see that heating implies a 

reduction of the heavy particle (atom, ion) density, followed by a reduction of the ion 

flux to the target (see Eq.(11)).  Additionally, one should expect that the pressure is not 

isotropic, as implied in (13), but that the “wind” of sputtered atoms displaces argon atoms 

preferentially in a direction normal to the target surface. 

The sputter yields are mainly determined by the surface binding energy of the 

target material, and to a lesser degree by the kind of ions arriving at the target.  Fig. 5 

shows examples of sputter yields for primary argon ion and self-ion impact as calculated 

by the SRIM Monte Carlo code.21  The high primary energies displayed here could be 

realistically obtained by multiply charged ions at high target voltage.  As the HIPIMS 

pulse progresses, argon ions are partially replaced by metal ions.  The degree and speed 

of this replacement depends on the target material, gas pressure, and on the applied 

voltage.  Gas ion replacement may reach a threshold such that the condition of sustained 

self-sputtering (1) is satisfied: the system will switch into a qualitatively and 
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quantitatively very different mode, characterized by a higher current.  Higher current 

implies higher power, and indeed one can see the magnetron’s optical emission jumps to 

higher brightness and it also changes color.  This switching is very obvious for most 

materials.  For example, for copper or niobium at an argon pressure of 1.8 Pa, the 

brightness jumps when the voltage is increased from 530 V to 535 V (Fig. 1), and from 

490 V to 500 V (Fig. 8), respectively.  The color change is related to the change of 

excitations conditions and type and density of excited species.  Detailed spectroscopic 

investigations will provide greater insight. 

If the power setting is high, for example if we consider the case of copper with an 

applied voltage of 800 V, i.e., a voltage clearly higher than the threshold of 535 V, the 

transition to the self-sputter-dominated mode occurs within the initial current peak (Fig. 

2).  At low pressure one can discern this onset by a change of the slope of the current 

curve (moment “c” in Fig. 3).   

While self-sputtering is associated with a feedback mechanism that leads to 

amplification of sputtering and ionization, there is also an increase in “losses” of 

sputtered atoms from the target zone.  These losses eventually start to compensate the 

generation processes ( time “d” in Fig. 3); the flat curve after time “d” indicates that the 

discharge has found a new steady state.  Losses to the magnetron processes imply that the 

flux of sputtered material becomes available in areas remote to the target (e.g., the 

substrate), and contribute to the deposition rate.  The steady state is reached faster when 

the applied voltage is higher because all processes are driven at greater rates. 

There are several interesting features in the ion current curves of Fig. 4.  After 

about the first 100 μs, the slope of the curves is suddenly steepening, which seems to 
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coincide with the time when metal overtakes rarefaction of argon.  This is most 

pronounced at high voltage (or power).  One can also see that the ion current at 20 cm 

distance tends to increase throughout the pulse even as the discharge parameters have 

found new steady-state values.  This cannot be attributed to the drift processes from the 

target to the more distant location of the collector because the delay time between 

discharge termination and the start of ion current decay is about only 20 μs, i.e., the 

information of pulse termination was transported to the ion collector with about .  

The ion current rise and fall times are much longer, which is indicative for the importance 

of metal plasma evolution and collisional processes.   

410 m/s

The ion flux pattern can be affected by the magnetic field of the circular  

drift current (Hall current), especially when the discharge current is high (> 50 A).  The 

Hall current is in a doughnut-shaped zone just above the “racetrack;” it can exceed the 

discharge current by about a factor 3.7 (DC magnetron with copper target and argon 

gas34) or somewhat less for pulsed systems.35,36  While plasma confinement near the 

racetrack remains largely unaffected, the field of the Hall current may alter the weak field 

region far from the target and may facilitate increased ion flow to the substrate as shown 

in Fig. 4 for copper.   

Ε×Β

The results for the other target materials show qualitatively similar features.  

However, it was surprising to find that the level of target current at the onset of the self-

sputter-dominated phase did not correlate with the self-sputter yield.  It shows again that 

the condition 1SSγ >  is a necessary but not sufficient condition, and that secondary 

electron emission yield, magnetic confinement of secondary electrons, and their ability to 

ionize the target atoms are critical to reaching the self-sputter-dominated mode.  These 
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factors are very different for the various target materials.  Here we point out a few 

features. 

After onset of the self-sputter mode, the current for Ti and Nb did not reach 

steady state for the discharge conditions of our experiment: the feedback processes and 

current amplification of self-sputtering led to rising currents exceeding the limit of the 

power supply.  The ionization of Ti and Nb atoms seems to occur very efficiently.  One 

factor is the high yield of secondary electrons, which can be attributed to a relatively low 

work function (Table I).  One may speculate that these reactive transition metals may 

have formed dielectric layers that additionally enhance the yield.   

Another possible factor is that the ionization energy to obtain doubly charged ions 

is relatively low, hence the concentration of doubly charged ions is expected to be high.  

This point is important because it will critically affect the secondary electron yield.  As 

mentioned earlier, singly charged metal ions do not cause PE and their kinetic energy is 

too low until it exceeds the apparent threshold of about 10 eV/amu (this has been nicely 

demonstrated for the case of gold37).  Therefore, we suggest that multiply charged metal 

ions play a critical role for the onset and maintenance of the self-sputter-dominated 

phase.  If one generalizes condition (5) to multiply charged ions, there should be a 

consideration of the ion’s total ionization energy on the one hand, and the total work 

function of all emitted electrons, at least ( )1Q φ+ , on the other hand, where Q is the 

charge state number of the arriving ion (Q electrons are needed for neutralization, and at 

least one is actually emitted).  Generally,  

 ( )' ' 1
'

1
Q

Q Q
Q

E Q φ→ + > +∑ , (14) 
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is satisfied by a wide margin by metal ions with charge state .  The presence of 

multiply charged ions in HIPIMS discharges has been detected by optical emission 

spectroscopy12,13 and by particle spectroscopy.  For example, Figure 7 shows 

measurements of Ti and Cr, where not only doubly charged metal ions are detected but 

even doubly charged argon, whose ionization energy is even higher (Table I).   

1Q >

We conclude the discussion by looking at the other materials.  Carbon (graphite 

target) is a semi-metal.  It is a special case because carbon has a very small sputter yield 

(Fig. 16).  Condition (1) can therefore never be satisfied, i.e., carbon does not go in the 

self-sputter dominated mode.  The current level after the initial peak does not reach the 

high level seen with other target materials.  Carbon is also special because it has a low 

mass (higher atom velocity) as well as higher ionization energy than the true metal 

targets.  This means that sputtered carbon atoms are less likely to become ionized.  

However, once ionized, the singly charged ion can cause PE, cf. condition (5).  Due to the 

lower ionization, the atom’s low mass and the low flux of sputtered atoms, the rarefaction 

of argon is much slower: the initial peak is much wider than with other target materials. 

The situation for tungsten is in great contrast to carbon (Fig. 10).  Tungsten is 

easily ionized, its atomic mass is greater than the argon mass, which is important for the 

collisions leading to argon rarefaction, and last not least, the escape velocity of sputtered 

atoms slow.  The rise time of the initial current peak is therefore very short, and the peak 

has a very small full width at half maximum.  The transition to the self-sputter-dominated 

mode is observed at about 700 V of applied voltage, although the absolute current value 

does not reach or exceed the initial (argon ion) peak value.  The current signal for 

tungsten was noisier than for other materials, and in fact some minor smoothing of the 
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signal was necessary to keep the presentation of the curve set neat.  This is in contrast to 

copper (Fig. 1) where the signal was very smooth.  Since the current signal is dominated 

by ions arriving at the target, the noisiness reflects fluctuations in ion generation and 

possibly ion charge states.  Based on the lower ionization energies and the presence of 

multiple charge states for tungsten on the one hand, and many more “smoothing” charge 

exchange collisions for copper on the other hand, it is reasonable to expect greater 

fluctuations for tungsten.   

Aluminum showed all of the previously mentioned effects (Fig. 11) but not in any 

extreme way.  The transition to the self-sputtering-dominated mode occurred at an 

applied voltage of about 600 V but here in a more gradual manner.  Aluminum and some 

other materials showed low-frequency instabilities under certain conditions – we will 

report on those effects in a separate publication. 

Chromium showed a surprisingly low current (Fig. 12).  The metal-dominated 

mode does not seem to be established within the parameter range investigated – there is 

at best a mode in which both argon and metal ions play a role.  Base on experiments with 

chromium using another, higher voltage system at the Sheffield Hallam University, we 

believe we would have reached the metal-dominated-phase in this experiment if the 

voltage was greater than 1 kV.  However, we do not have a convincing explanation for 

the minimum of the initial (argon ion) peak observed at a voltage of 550 V, and for the 

differences to other metals like tungsten, for example, given that work function, 

ionization energies, and sputter yields are not very different.  

 

V. SUMMARY AND CONCLUSIONS 
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High power impulse magnetron sputtering (HIPIMS) discharges are characterized 

by a peak power density at the target exceeding conventional power densities by about 

two orders of magnitude or more.  For orientation, the power density in the racetrack 

zone may reach a peak of 10 kW/cm2, as opposed to the more conventional 100 W/cm2 or 

less.  Consequently, the plasma density is much higher and the sputtered atoms may 

become ionized.   

The current study shows that the current-voltage-time characteristics strongly 

depend on the material but do not simply correlate with the self-sputter yields.  This 

pointed to the important role of secondary electrons, their confinement by the magnetic 

field, and their ability to efficiently ionize sputtered atoms which will return to the target 

due to the presence of the electric field in the sheath and presheath.  The yield of 

secondary electrons depends strongly on the potential energy of the primary ions, and 

therefore we have reason to believe that the generation of multiply charged metal ions is 

critical for the onset and maintenance of the self-sputter-dominated phase.  

The characteristics taken for constant voltage typically show an initial current 

peak, which can be ascribed to argon ions and secondary electrons generated by them, 

followed by a second phase which can be associated with sustained self-sputtering 

provided the power level is high enough.  This supports similar findings by Macak and 

coworkers[Macak, 2000 #2364] for TiAl targets.  While copper settled into a new steady-

state phase, the current of titanium and niobium did not reach such steady-state within the 

current limits of the power supply.  Carbon did not go into a second high-current, self-

sputter-dominated phase, which is not a surprise given the low sputter yield and high 

ionization energy.  Other materials show the self-sputter-dominated phase in a more-or-
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less pronounced manner, the details of which call for time-dependent modeling of the 

discharge taking into account at least two spatial dimensions.   
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FIGURE CAPTIONS 

FIG. 1 Current pulse shapes at different constant voltage for a copper magnetron 

discharge (2” target) in argon at 1.8 Pa.  The actual target voltage is constant and 

equal to the nominal voltage up to about 800 V, the target voltage starts to slightly 

droop for higher voltages, indicating the limited stored energy of the power supply.  

As the voltage approaches the supply’s limit of 1000 V, the actual voltage droops 

and shows less stability.  For the highest setting, a shorter pulse of only 300 μs was 

used. 

FIG. 2 Current pulse shapes for different argon gas pressures when using a copper target.  

Note the pressure-dependence of the initial peak but the relative independence later 

in the pulse.   

FIG. 3 Discharge current on copper target for an initial argon pressure of 0.44 Pa 

(corresponds to first curve shown in Fig. 2): Label a indicates the moment when the 

voltage is applied, b when the discharge starts, c when there is a change in the slope 

of the discharge current, and d when the current goes into saturation.  The 

significance of these events is discussed in the text. 

FIG. 4  Ion current to an ion collector for HIPIMS copper discharges as a function of 

time, with the applied voltage as the parameter.  The curves correspond to current 

pulses shown in Fig. 1. 

FIG. 5 SRIM-calculated sputtering yields for primary argon ion and self-ion impact.  

Note that the high primary energies displayed here could be realistically obtained 

by multiply charged ions at high target voltage.   
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FIG. 6 Current pulse shapes at different constant voltage for Ti discharges in argon at 1.8 

Pa.  The pulse length for higher driving voltage was precautionary reduced to not 

damage power supply and magnetron.  Note that each curve is taken from a single 

pulse.  In the transitional region around 585 V, several examples are shown to 

illustrate the irregular pulse shapes observed right at this threshold to the self-

sputtering-dominated mode. 

FIG. 7  Ion flux integrated over 50 μs pulses, as a function of the peak current (end of 

pulse), measured 10 cm from the target using the HIDEN EQP plasma analyzer, for 

titanium (top) and chromium (bottom). 

FIG. 8  Current pulse shapes at different constant voltage for Nb discharges in argon at 

1.8 Pa.  The curve at 550 V was clipped by the arc suppression circuit, see 

explanation in text. 

FIG. 9  Current pulse shapes at different constant voltage for discharges with a graphite 

target in argon at 1.8 Pa.  

FIG. 10  Current pulse shapes at different constant voltage for discharges with a W target 

in argon at 1.8 Pa.  

FIG. 11  Current pulse shapes at different constant voltage for discharges with a Al target 

in argon at 1.8 Pa.  

FIG. 12 Current pulse shapes at different constant voltage for discharges with a Cr target 

in argon at 1.8 Pa.  

FIG. 13  Child sheath thickness as a function of plasma density, with electron 

temperature and sheath voltage as parameters.  
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FIG. 14  Gyration radius for electrons as a function of magnetic induction, with the 

energy-equivalent voltage as a parameter.   

FIG. 15  Parametric presentation of the mean free path for fast atoms in gas; the mean 

free path increases proportionally with the gas temperature. 

FIG. 16  Self-sputter yields for various target materials as a function of primary ion 

kinetic energy, as calculated by SRIM code.  For copper and titanium see Fig. 5. 
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