EXTRACTION COMPRESSION AND ACCELERATION OF HIGH LINE CHARGE DENSITY ION BEAMS

PDF Version Also Available for Download.

Description

High Energy Density Physics (HEDP) applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam-bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba){sup 2} is proportional to the line charge ... continued below

Physical Description

3

Creation Information

Henestroza, Enrique; Henestroza, E.; Peters, C.; Yu, S.S.; Grote, D.P. & Briggs, R.J. May 20, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High Energy Density Physics (HEDP) applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam-bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba){sup 2} is proportional to the line charge density. Thus it is possible to accelerate a matched beam at constant line charge density. An experiment, NDCX-1c is being designed to test the feasibility of this type of injectors, where we will extract a 1 microsecond, 100 mA, potassium beam at 160 keV, decelerate it to 55 keV (density {approx}0.2 {micro}C/m), and load it into a 2.5 T solenoid where it will be accelerated to 100-150 keV (head to tail) at constant line charge density. The head-to-tail velocity tilt can be used to increase bunch compression and to control longitudinal beam expansion. We will present the physics design and numerical simulations of the proposed experiment.

Physical Description

3

Source

  • Proceedings of the PAC 2005, May 16-20, 2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-56792
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 934668
  • Archival Resource Key: ark:/67531/metadc898819

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 20, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 11:55 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Henestroza, Enrique; Henestroza, E.; Peters, C.; Yu, S.S.; Grote, D.P. & Briggs, R.J. EXTRACTION COMPRESSION AND ACCELERATION OF HIGH LINE CHARGE DENSITY ION BEAMS, article, May 20, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc898819/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.