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The resummation of soft gluon exchange for QCD hard scattering requires a matrix of anomalous
dimensions, which has been computed through two loops. The two-loop matrix is proportional
to the one-loop matrix. Recently there have been proposals that this proportionality extends to
higher loops. One can test such proposals by computing the dependence of this matrix on the
matter content in a generic gauge theory. It is shown that for the matter-dependent part the
proportionality extends to three loops for arbitrary massless processes.

High-energy colliders, particularly hadron colliders
such as the Tevatron and the imminent Large Hadron
Collider (LHC), copiously produce complex events con-
taining multiple jets of hadrons. The production rate
for such events can be understood through perturbative
quantum chromodynamics (QCD). However, in many
cases large logarithms of ratios of kinematic quantities
appear, and it is necessary to resum these logarithms to
obtain an accurate prediction. For processes in which
only two partons appear at the leading order in the per-
turbation expansion in αs (Born level), such as quark-
antiquark annihilation to an electroweak vector boson,
or gluon-gluon fusion into the Higgs boson, such resum-
mations have been carried out to relatively high order [1],
thanks in part to a detailed understanding of properties
of the Sudakov form factor in QCD [2–4]. In these cases,
only one color structure is permitted — the colors of the
two partons must be identical. For three partons as well,
a unique color structure appears at Born level (an SU(3)
generator matrix or structure constant).

However, for four or more partons, such as appear
in di-jet production at hadron colliders, the Born level
process contains multiple color structures. The emis-
sion or virtual exchange of soft gluons can mix these
structures. To organize the logarithms from virtual ex-
change it is convenient to introduce a soft anomalous

dimension matrix [5–8]. This matrix can be computed
from the renormalization properties of vacuum matrix el-
ements of products of Wilson lines, also known as eikonal
lines. Each line corresponds to an external parton in the
amplitude [6]. At one loop, the soft matrix can only
change the colors of two hard partons at a time, because
the virtual gluon propagator has only two ends. Such
action can be written as a color operator of the form
T

a
i T

a
j ≡ Ti ·Tj [9, 10] where Ti indicates the action on

the color of line i, and the adjoint index a of the virtual
gluon is summed over.

At higher loops, it might seem that arbitrarily many
external partons (eikonal lines) could eventually be con-
nected by soft gluons, resulting in a very complicated
soft anomalous dimension matrix. For example, at two
loops the structure fabc

T
a
i T

b
jT

c
k might have appeared,

connecting eikonal lines i, j and k. Rather remarkably,
however, such a structure does not appear, for any two-
loop amplitude in a massless gauge theory [11, 12]. Also,

the two-loop soft anomalous dimension matrix Γ
(2)
S is

proportional to the one-loop matrix,

Γ
(2)
S =

[

γ
(2)
K /γ

(1)
K

]

Γ
(1)
S , (1)

where γ
(L)
K is the L-loop coefficient of the cusp anoma-

lous dimension [13], γK(αs) =
∑∞

L=1 γ
(L)
K (αs/π)L, with

γ
(1)
K = 2Ci (Ci is the quadratic Casimir for line i). This

result agrees with explicit infrared singularities of various
two-loop QCD amplitudes [14–16]. The soft anomalous
dimension matrix also appears in the study [17] and re-
summation [18] of electroweak Sudakov logarithms, rel-
evant for very high-transverse-momentum processes at
the LHC. (An analogous “cross” anomalous dimension
matrix governs color exchange in forward 2 → 2 scatter-
ing [19]. As this is not in the fixed-angle regime, the cross
and soft anomalous dimensions are not directly compa-
rable.) Recently it has been conjectured that the pro-
portionality (1) might persist to higher loops [20–22].
Ref. [22] also showed that such an ansatz is consistent
with a required invariance under rescaling of Wilson-line
velocities, but the solution to the consistency conditions
is not unique for amplitudes with four or more partons.

In this letter the proportionality (1) is shown to ex-

tend to three loops, for the part of Γ
(3)
S that depends

on the matter content, in any massless gauge theory.
The result is established using the same transforma-
tion of loop-integration variables employed at two loops

in refs. [11, 12]. There is also a term in Γ
(2)
S arising

from pure gluon exchange. Although the result here
shows that certain pure-glue contributions connecting
three eikonal lines also vanish, other contributions con-
necting three and four lines remain to be understood.
On the other hand, these contributions are the same
in any theory, so it is possible, for example, to extract
them from an amplitude in N = 4 super-Yang-Mills the-
ory (SYM), and then apply the result to QCD. In fact,
the full color dependence of the three-loop four-point am-
plitude in N = 4 SYM is known in terms of a handful of
loop integrals [20]. Evaluating the integrals (a nontriv-
ial task) would allow a test of the proportionality of the
pure-gauge part of the soft anomalous dimension matrix
at three loops. The observed uniform transcendental-

ity of N = 4 SYM amplitudes [23] already implies that

any non-proportional term in Γ
(3)
S should be a weight-5
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transcendentality function of kinematic invariants, where
ζ(n), lnn x and Lin(x) are examples of weight n functions
— in addition to the constraints of ref. [22].

Consider the scattering amplitude for n massless par-
tons fi carrying (all-outgoing) momenta {pi} and color
{ri}. To analyze the amplitude at fixed angles and large
overall momentum scale Q, represent the momenta as
pi = Qvi, v2

i = 0, where the vi are four-velocities. Di-
vergences are regulated using dimensional regularization
with D = 4 − 2ǫ. The amplitude’s color-dependence can
be represented as a vector |M〉 in a C-dimensional vector
space spanned by the color tensors {(cI){ri}

} [6, 10, 24],

|M〉 ≡
C

∑

I=1

MI (cI){ri}
. (2)

For example, for n-gluon amplitudes, one choice of
basis is the set of multiple traces of generators,
tr(T a1 . . . T ak) tr(T ak+1 . . . T al) . . .. For amplitudes with
two quarks (1 and 3) and two anti-quarks (2 and 4), the
basis is much simpler; it is spanned by δı̄2

i1
δı̄4
i3

and δı̄4
i1

δı̄2
i3

.
Infrared divergences of on-shell amplitudes may be

factorized into jet functions describing virtual partons
collinear with the external lines, and soft functions char-
acterizing the exchange of soft gluons between the hard
lines. The general form of the factorized amplitude, for
equal factorization and renormalization scales µ, is [24]

∣

∣M
(

vj , Q
2/µ2, αs(µ), ǫ

)〉

=

n
∏

i=1

J [i] (αs(µ), ǫ)

×S
(

vj , Q
2/µ2, αs(µ), ǫ

) ∣

∣H
(

vj , Q
2/µ2, αs(µ)

)〉

, (3)

where J [i] is the jet function for external state i, S is the
soft function, and H is the hard (short-distance) func-
tion, which is finite in the infrared.

The jet function for parton i can be expressed to all
orders in terms of three anomalous dimensions, K[i], G[i]

and γ
[i]
K ; and K[i] is completely determined by γ

[i]
K [3, 4].

This letter concerns the soft function S. It is governed
by the soft anomalous dimension matrix ΓS ,

S
(

vi · vj Q2/µ2, αs(µ), ǫ
)

= P exp

[

−

∫ µ

0

dµ̃

µ̃
ΓS

(

vi · vj Q2

µ2
, ᾱs (µ̃, ǫ)

)]

= 1 +
1

2ǫ

(αs

π

)

Γ
(1)
S +

1

8ǫ2

(αs

π

)2 (

Γ
(1)
S

)2

−
β0

16ǫ2

(αs

π

)2

Γ
(1)
S +

1

4ǫ

(αs

π

)2

Γ
(2)
S + . . . . (4)

and also involves the D-dimensional running coupling.
At one loop, ᾱs is given by

ᾱs (µ̃, ǫ) = αs(µ)

(

µ2

µ̃2

)ǫ ∞
∑

l=0

[

β0

4πǫ

((

µ2

µ̃2

)ǫ

− 1

)

αs(µ)

]l

with β0 = (11CA − 4TRnf )/3 in QCD.

B

C

A
1k

k2

(b)

B

C

A
1k

k2

(a)

FIG. 1: Three-loop diagrams containing a fermion or scalar
loop and three eikonal lines, corresponding to a three-gluon
vertex at two loops.
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FIG. 2: Three-loop three-eikonal diagram containing a
fermion or scalar bubble, and not originating from a three-
gluon vertex at two loops.

The one-loop soft matrix is [6, 10]

Γ
(1)
S =

1

2

n
∑

i=1

∑

j 6=i

Ti ·Tj ln

(

µ2

−sij

)

, (5)

where sij = (pi + pj)
2. Resummed cross sections are

determined by the eigenvalues and eigenvectors of ΓS [7,

8, 25]. Proportionality of Γ
(2)
S to Γ

(1)
S implies that for

fixed kinematics, the same eigenvectors that diagonalize
the one-loop matrix also diagonalize the two-loop matrix,
simplifying the integration over scale. [11, 12]

The soft anomalous dimension matrix is found from
the single-ultraviolet-pole terms in ǫ, for suitable combi-
nations of eikonal lines, as described in detail at one [6]
and two loops [12]. At L loops, the maximum number
of eikonal lines that can be connected to some gluon is
2L. However, this maximal number corresponds to a dis-
connected product of L one-loop single gluon exchanges,
which appears in the expansion of the exponential (4).
Thus the divergence is removed by one-loop renormal-
ization. The maximum number of eikonal lines that does
not correspond to a disconnected product of lower-loop
configurations is L+1. Requiring dependence on the mat-
ter content of the theory means that there is a fermion or
scalar loop in the diagram; this cuts the maximum num-
ber of nontrivially connected legs to L. Such diagrams
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can be generated from the maximal nontrivial (L − 1)-
loop configurations by inserting bubbles with fermions or
scalars, or triangles, or higher-point one-loop diagrams.

At two loops, the key eikonal diagrams for demonstrat-
ing proportionality involved three eikonal lines [11, 12],
labelled by A, B and C, with velocities vA, vB and vC .
The diagrams can be divided into two cases: (i) three
eikonal lines connected uniquely by a three-gluon vertex,
and (ii) three eikonal lines connected by two single-gluon
exchanges, so that two gluons attach to one of the eikonal
lines. Diagram (i) was found to vanish. The sum of di-
agrams of type (ii) was found to have only a symmetric
color configuration, proportional to {TA ·TC , TC ·TB};
the coefficient factorized into an appropriate form to be
removed by one-loop renormalization. (It corresponds
to second-order terms in the expansion of the exponen-
tial (4) in which one leg is common to both factors.)

Inserting a matter triangle or bubble into diagram (i)

gives the three-loop diagrams in fig. 1(a) and (b). Insert-
ing a bubble into a type (ii) diagram gives diagrams of the
form shown in fig. 2. I shall show that this insertion does
not affect the properties established for the pure-gluon
diagrams at two loops. The proof uses exactly the same
change of integration variables used at two loops, plus,
for diagram 1(a), a handy representation of the one-loop
three-gluon vertex fa1a2a3Γµ1µ2µ3

(k1, k2, k3), evaluated
in an arbitrary gauge [26]. Inserting this representation
into diagram 1(a) yields the loop-momentum integral,

F1(a)(vA, vB, vC) ∝ fabc
T

a
AT

b
BT

c
C

×

∫

dDk1d
Dk2

ΓvAvBvC

k2
1 k2

2 k2
3 vA · k1 vB · k2 vC · k3

, (6)

omitting the +iε prescription, with k3 = −k1 − k2 and

ΓvAvBvC
= vµ1

A vµ2

B vµ3

C Γµ1µ2µ3
(k1, k2, k3) = A(k2

1 , k2
2 ; k

2
3) vA · vB vC · (k1 − k2) + B(k2

1 , k
2
2 ; k

2
3) vA · vB vC · (k1 + k2)

− C(k2
1 , k2

2 ; k
2
3)(k1 · k2 vA · vB − vA · k2 vB · k1) vC · (k1 − k2)

+ 1
3S(k2

1 , k
2
2 , k

2
3) (vA · k2 vB · k3 vC · k1 + vA · k3 vB · k1 vC · k2)

+ F (k2
1 , k

2
2 ; k

2
3) (k1 · k2 vA · vB − vA · k2 vB · k1) (k2 · k3 vC · k1 − k1 · k3 vC · k2)

− H(k2
1 , k

2
2 , k

2
3)[vA · vB(k2 · k3 vC · k1 − k1 · k3 vC · k2) −

1
3 (vA · k2 vB · k3 vC · k1 − vA · k3 vB · k1 vC · k2)]

+ cyclic permutations of (k1, A), (k2, B), (k3, C). (7)

The precise forms of the coefficient functions A through
H are given in ref. [26], for gluon and massless fermion
loops. Here only their symmetry properties are needed:
A, C and F are symmetric under exchange of the first
two arguments; B is antisymmetric in the first two argu-
ments; S is totally antisymmetric; and H is totally sym-
metric. Ref. [26] does not explicitly consider the case of a
massless scalar, but the vanishing of three-point functions
in N = 4 SYM implies that the scalar loop must have the
same tensor decomposition and symmetry properties.

The change of loop-momentum variables used in
refs. [11, 12] was expressed in terms of light-cone variables
using the vectors vA and vB to define + and − directions.
Here it suffices to give the action of the transformation
on the various Lorentz products that appear,

vA · ki →
vA · vC

vB · vC

vB · kı̂ , vC · ki → vC · kı̂ ,

vB · ki →
vB · vC

vA · vC

vA · kı̂ , ki · kj → kı̂ · k̂ , (8)

where 1̂ = 2, 2̂ = 1, and 3̂ = 3. The Jacobian for this
transformation is unity. It is simple to check that ev-
ery contracted tensor appearing in eq. (7) has the proper
symmetry under (8) so that, combined with the symme-
try of the appropriate coefficient function, and the re-
maining (symmetric) product of propagators in eq. (6),

the integrand is antisymmetric. Hence the integral (6)
vanishes.1 For example, the two terms multiplying S in
eq. (7) exchange with each other with a positive sign,
whereas the corresponding terms multiplying H do so
with a negative sign. Note that the transformation (8) is
only to be used for the term shown explicitly in eq. (7).
For the two images of this term under cyclic permutation,
one should use the correspondingly permuted transfor-
mation, which respects the symmetry properties of the
permuted functions A through H .

For the diagrams in fig. 1(b) and fig. 2, write the bubble
diagram as

Πa1a2

µ1µ2
(k2) = δa1a2(ηµ1µ2

− ξkµ1
kµ2

/k2)Π(k2) , (9)

where ξ = 1 for the transverse scalar and fermion bub-
bles, but ξ may differ from 1, depending on the gauge, for
a gluon bubble. The ηµ1µ2

term in eq. (9), inserted into
diagrams 1(b) and 2, clearly gives the same tensor struc-
ture as at two loops. Thus [11] its contribution to dia-
gram 1(b) vanishes. It is easy to see that the ξ-dependent

1 Another argument for the vanishing uses total antisymmetry of
the integrated result under exchanges of {vA, vB , vC}, and the
impossibility of building such functions [27].
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terms are also odd under the transformation (8), so dia-
gram 1(b) vanishes for any ξ.

There are four diagrams of the type shown in fig. 2, re-
lated by changing the order of connection on line C, and
by moving the matter bubble to the other gluon line.
The sum of the four diagrams splits into a color antisym-
metric piece, proportional to [TA ·TC , TC ·TB], whose
coefficient vanishes exactly as in ref. [12]; and a color
symmetric piece, proportional to {TA · TC , TC · TB},
containing a factor in the integrand of

1

vC · k1

[

vA · vC

(

vB · vC − ξ
vB · k1vC · k1

k2
1

)

Π(k2
1)

+ (vA ↔ vB , k1 ↔ k2)

]

+ (vA ↔ vB , k1 ↔ k2)

=
vC · (k1 + k2)

vC · k1 vC · k2

[

vA · vC

(

vB · vC − ξ
vB · k1vC · k1

k2
1

)

× Π(k2
1) + (vA ↔ vB, k1 ↔ k2)

]

. (10)

The latter form implies that this diagram factorizes into
the product of a one-loop diagram with the matter-
dependent part of the two-loop diagram. Hence it also

does not contribute to Γ
(3)
S . The above arguments also

show that, independent of the gauge, the soft matrix does
not receive contributions from those three-eikonal pure-
glue diagrams containing a gluon loop.

Finally one must address the matter-dependent con-

tributions to Γ
(3)
S involving only two eikonal lines. As

was the case for the full Γ
(2)
S , only two of these dia-

grams (ladder and crossed ladder) do not obviously re-
duce group theoretically to the form Ti ·Tj . Inserting a

matter bubble of the form (9) does not change the group
theory. The magnitudes of these two contributions are
linked [19, 28], however, by the general non-abelian ex-
ponentiation theorem for eikonal webs [29], in such a way
that their sum is of the form Ti ·Tj (after removing the
square of the one-loop term). Because this result holds
for the case of two partons (i and j of equal colors, so
that Ti · Tj → T

2
i = Ci), the constant of proportion-

ality must be the (matter dependent part of) the cusp
anomalous dimension,

Γ
(3), matter
S =

[

γ
(3), matter
K /γ

(1)
K

]

Γ
(1)
S . (11)

An alternative, very general argument for the constant of
proportionality, given that the matrix is proportional, is
based on an anomaly under rescalings of the eikonal-line
velocities [22]. As noted there, the situation may become

more complex at four loops, due to the fact that γ
(4)
K

might contain quartic Casimir terms ∼ (dabcd
A )2 [28–30].

In summary, the results of this letter show that the
three-loop soft anomalous dimension matrix is essentially
the same in all massless gauge theories, i.e. up to the

matter dependence of γ
(3)
K . If proportionality fails for

the pure gauge terms, then at least the three-loop prop-
erties are constrained by N = 4 super-Yang-Mills theory,
as well as the velocity rescalings studied in ref. [22].
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