ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT

PDF Version Also Available for Download.

Description

The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program at LLNL has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Several achievements in schema design, data visualization, synthesis, and analysis were completed this year. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. As data volumes have increased, scientific information management issues such as data quality assessment, ontology mapping, and metadata collection that are essential for production and validation ... continued below

Physical Description

PDF-file: 12 pages; size: 1.2 Mbytes

Creation Information

Ruppert, S D; Dodge, D A; Ganzberger, M D; Hauk, T F & Matzel, E M July 6, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Engineering (GNEM R&E) Program at LLNL has made significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Several achievements in schema design, data visualization, synthesis, and analysis were completed this year. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. As data volumes have increased, scientific information management issues such as data quality assessment, ontology mapping, and metadata collection that are essential for production and validation of derived calibrations have negatively impacted researchers abilities to produce products. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Nearly a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes elements of stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable recording of processing flow and metadata. A core capability is the ability to rapidly select and present subsets of related signals and measurements to the researchers for analysis and distillation both visually (JAVA GUI client applications) and in batch mode (instantiation of multi-threaded applications on clusters of processors). Development of efficient data exploitation methods has become increasingly important throughout academic and government seismic research communities to address multi-disciplinary large scale initiatives. Effective frameworks must also simultaneously provide the researcher with robust measurement and analysis tools that can handle and extract groups of events effectively and isolate the researcher from the now onerous task of database management and metadata collection necessary for validation and error analysis. Sufficient information management robustness is required to avoid loss of metadata that would lead to incorrect calibration results in addition to increasing the data management burden. Our specific automation methodology and tools improve the researchers ability to assemble quality-controlled research products for delivery into the NNSA Knowledge Base (KB). The software and scientific automation tasks also provide the robust foundation upon which synergistic and efficient development of, GNEM R&E Program, seismic calibration research may be built.

Physical Description

PDF-file: 12 pages; size: 1.2 Mbytes

Source

  • Presented at: Monitoring Research Review, Denver, CO, United States, Sep 25 - Sep 27, 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-CONF-232583
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 920874
  • Archival Resource Key: ark:/67531/metadc898803

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 6, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 23, 2016, 6:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Ruppert, S D; Dodge, D A; Ganzberger, M D; Hauk, T F & Matzel, E M. ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT, article, July 6, 2007; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc898803/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.