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1 Overview

Numerical optimization is a pervasive tool for planning and controlling physical systems. A small
sample of applications using optimization includes blending and process design, bioinformatics,
environmental planning, national security, medical treatment planning, and financial asset and
supply chain management. However, even with the advances made in optimization theory and
algorithms, and with the increasing the power and utility of large-scale computational platforms,
there still exist areas in which the needs of users of optimization technology exceed the tools and
solution capabilities of modern solvers. This proposal addressed two of these areas: optimization
problems containing nonconvexities and optimization problems under uncertainty.
Project Objectives: Develop new algorithmic techniques for solving large-scale numerical opti-
mization problems, focusing on problems classes that have proven to be among the most challenging
for practitioners: those involving uncertainty and those involving nonconvexity. This research ad-
vanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed
integer nonlinear programs, and stochastic optimization problems.

2 Stochastic Programming

In the context of stochastic programming, this project made two main contributions. First, we
studied a stochastic version of the well-known network interdiction problem, where the successful
destruction of an arc of the network is a Bernoulli random variable, and the objective is to mini-
mize the maximum expected flow of the adversary. By using duality and linearization techniques,
an equivalent deterministic mixed integer program was formulated. A specialized decomposition
approach was used in combination with grid computing to solve instances much more efficiently
that reported in the literature. This work appeared in [9].
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The second contribution demonstrated the efficacy of using sampled approximations to stochas-
tic programs. Stochastic programs can be solved approximately by drawing a subset of all possible
random scenarios and solving the problem based on this subset. The value of the optimal solution
to the sampled problem provides an estimate of the true objective function value. This estimator
is known to be optimistically biased; the expected optimal objective function value for the sampled
problem is lower (for minimization problems) than the optimal objective function value for the true
problem. We investigated how two alternative sampling methods, antithetic variates and Latin
Hypercube sampling, affect both the bias and variance, and thus the mean squared error (MSE),
of this estimator. For a simple example, we analytically express the reductions in bias and vari-
ance obtained by these two alternative sampling methods. For test problems from the literature,
we computationally investigated the impact of these sampling methods on bias and variance. We
find that both sampling methods are effective at reducing mean squared error, with Latin Hyper-
cube sampling outperforming antithetic variates. Whether the bias reduction or variance reduction
plays a larger role in MSE reduction is problem and parameter specific. This work resulted in the
publications [16, 4]. In this section we give details about these contributions.

2.1 Stochastic Network Interdiction

The Stochastic Network Interdiction Problem (SNIP) is defined on a capacitated directed network
G = (V,A), with specified source node r ∈ V and sink node t ∈ V . The capacity of arc (i, j) ∈ A

is uij . The realizations of uncertainty are captured in a countable set of scenarios S, in which each
element s ∈ S occurs with probability ps. There is a finite budget K available for interdiction, and
the cost of interdicting on any arc (i, j) ∈ A is hij . To write a mathematical program for SNIP,
define the binary decision variables

xij =

{
1 if interdiction occurs on arc (i, j) ∈ A,

0 otherwise.

With these definitions, SNIP can be written as the formulation F1:

(F1) zSNIP = min
∑
s∈S

psfs(x)

subject to
∑

(i,j)∈A

hijxij ≤ K,

xij ∈ {0, 1} ∀(i, j) ∈ A,

where fs(x) is the maximum flow from node r to node t in scenario s if interdictions occur on the
arcs indicated by the {0, 1}-vector x. The scenario is defined by a random vector

ξijs =

{
1 if interdiction on arc (i, j) ∈ A in scenario s ∈ S would be successful,
0 otherwise,

Using duality and linearization arguments, we showed that the following mixed integer linear
program is a valid reformulation of the stochastic network interdiction problem:
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(F) zSNIP = min
∑
s∈S

ps

 ∑
(i,j)∈A

uijρijs −
∑

(i,j)∈A

uijξijszijs


subject to zijs − xij ≤ 0 ∀(i, j) ∈ A,∀s ∈ S,

zijs − ρijs ≤ 0 ∀(i, j) ∈ A,∀s ∈ S,∑
(i,j)∈A

hijxij ≤ K,

πrs − πts ≥ 1 ∀s ∈ S,

ρijs − πis + πjs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S,

xij ∈ {0, 1} ∀(i, j) ∈ A,

zijs, ρijs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S.

Formulation F is a mixed integer linear program whose solution gives an optimal solution to
the stochastic network interdiction problem. A desirable feature of this formulation is that if x

is fixed, then the formulation decouples into |S| independent linear programs. The decomposable
structure of the formulation was exploited by the solution algorithm.

Table 1 shows how the lower and upper bounds on optimal solution value vary as a function
of the sample size for each instance for different network sizes. The average wall clock time and
average number of processors used to achieve the solution x∗j to the sample average approximation
is also listed for each instance and sample size, as are the average number of iterations required
to solve the initial linear programming relaxation and the average number of integer programs
necessary to solve the instance.

The solution time for most instances is quite moderate and shows a relatively low dependence
on the number of scenarios N . The low dependence on N is primarily accounted for by the fact
that the number of LP iterations and IP solves remains nearly constant regardless of N . Instances
with larger values of N require more computational effort, but they can also be parallelized to a
higher degree, as there are more scenario linear programs to solve at each iteration. Cormican,
Morton, and Wood report solving an instance of the size of SNIP10x10 to 1% accuracy in 23,970
seconds on an RS/6000 Model 590. We achieve a similarly accurate solution in two minutes.

2.2 Bias Reduction for Sample Path Optimization

The Stochastic Network Interdiction Problem from Section 2.1 was an example of a two-stage
stochastic optimization problem. At the first

At the first stage, values are chosen for a set of design variables; for example, the arcs upon
which to interdict. The objective function of the first-stage problem requires us to evaluate the
expected value of the solution to a second-stage linear program, some of whose parameters are
stochastic. Furthermore, the design variables from the first stage appear in the constraints of the
second-stage problem.
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Instance N LB UB Avg. Sol Avg # Avg # LP Avg # IP
Time (sec.) Workers Iterations Solves

SNIP7x5 50 76.42 ± 4.24 80.87 ± 0.91 227.39 1.39 12.10 1.00
SNIP7x5 100 77.31 ± 3.14 80.87 ± 0.79 136.83 0.94 12.80 1.40
SNIP7x5 200 78.51 ± 3.12 80.85 ± 0.75 118.96 1.21 12.30 0.00
SNIP7x5 500 78.62 ± 1.37 80.50 ± 0.52 118.92 1.32 12.50 0.00
SNIP7x5 1000 80.10 ± 0.70 79.99 ± 0.21 149.78 2.05 13.20 0.00
SNIP7x5 2000 79.50 ± 1.09 80.42 ± 0.53 218.65 3.29 12.10 0.70
SNIP7x5 5000 80.34 ± 0.45 80.14 ± 0.31 630.75 7.17 10.10 0.00
SNIP4x9 50 9.96 ± 1.02 11.16 ± 0.26 328.22 0.66 9.20 2.00
SNIP4x9 100 9.47 ± 0.81 10.95 ± 0.12 273.13 1.17 9.90 2.00
SNIP4x9 200 10.92 ± 0.55 11.02 ± 0.17 129.03 0.99 10.40 4.90
SNIP4x9 500 10.45 ± 0.38 10.94 ± 0.05 580.33 1.42 9.60 6.70
SNIP4x9 1000 10.70 ± 0.24 10.91 ± 0.03 567.63 1.84 10.00 11.50
SNIP4x9 2000 10.55 ± 0.18 10.90 ± 0.05 787.59 2.35 10.10 11.60
SNIP4x9 5000 10.89 ± 0.15 10.82 ± 0.16 501.64 5.51 10.10 5.30

SNIP10x10 50 88.28 ± 1.86 88.75 ± 0.34 133.44 5.02 26.00 3.20
SNIP10x10 100 88.09 ± 2.92 88.52 ± 0.38 140.34 6.75 20.90 2.60
SNIP10x10 200 87.08 ± 1.83 88.55 ± 0.33 141.34 7.60 17.70 1.60
SNIP10x10 500 88.39 ± 0.85 88.20 ± 0.21 210.54 12.02 17.40 2.20
SNIP10x10 1000 87.90 ± 0.40 88.15 ± 0.12 362.42 21.47 17.80 1.80
SNIP10x10 2000 88.03 ± 0.41 88.09 ± 0.21 960.40 30.79 16.40 0.60
SNIP20x20 50 173.82 ± 3.88 192.03 ± 7.41 1098.74 24.03 86.50 2.30
SNIP20x20 100 180.36 ± 4.09 188.51 ± 3.25 2640.75 33.03 71.60 3.00
SNIP20x20 200 180.81 ± 2.87 187.00 ± 4.67 4767.96 36.47 66.60 3.50
SNIP20x20 500 182.38 ± 1.72 184.67 ± 3.28 21253.54 38.38 39.00 3.60

Table 1: Statistical bounds on optimal solution value and required computational effort.
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Two-stage optimization problems arise in very general settings. Generally, we have

MP : z∗MP
def= min

x
Eω [Q(x, ω)] + g(x), s.t. Ax = b, x ≥ 0,

where g(x) is a deterministic function of x, and Q(x, ω) represents the optimal objective function
value of the second-stage problem:

P : Q(x, ω) def= min
y

q(ω)T y, s.t T (ω)x + W (ω)y = h(ω), y ≥ 0.

Here q(ω) ∈ Rn, T (ω) ∈ R`×m,W (ω) ∈ R`×n, and h(ω) ∈ R` may be random (functions of the
realization ω). When g(x) = cT x and W (ω) is deterministic, we have a two-stage stochastic linear
program with fixed recourse.

In many practical problems the number of possible scenarios K is prohibitively large, so a Monte
Carlo approximation of MP is used. We will refer to this approach as sample path optimization,
or sample average approximation. The idea is to draw N realizations (sample paths) and optimize
over this representative sample. More specifically, let MPN (ω1, . . . , ωN ) denote a realization of the
N -sample path problem. That is,

MPN : z∗MPN (ω1,...,ωN )

def= min
x

N−1
N∑

i=1

Q(x, ωi) + g(x). s.t. Ax = b, x ≥ 0.

The solution to MPN is used to approximate the solution to the original problem MP.
Different mechanisms are available for selecting the sample used to generate the approximating

problem MPN For instance, we may use independent sampling (IS), antithetic variates (AV), and
Latin Hypercube sampling (LH). Suppose X is a random element of the data {q, T, W, h} having
invertible cdf F , so Qi(x, ωi) is a function of X(ωi). Under independent sampling we generate
N independent values {U1, . . . , UN} uniformly distributed on [0,1], and we use X(ωi) = F−1(Ui)
to compute Qi(x, ωi). Under AV, rather than drawing N independent numbers, we draw N/2
antithetic pairs {(Ui, 1 − Ui), i = 1, 2, . . . , N/2} to obtain {U1, . . . , UN}. Under LH, the interval
[0,1] is divided into N segments, [(i−1)/N, i/N ], i = 1 . . . , N , and a sample is generated uniformly
from each segment. These samples are shuffled to obtain {U1, . . . , UN}.

Our work in this proposal dealt with the impact of the sampling procedure on the use of z∗MPN

as an estimator for z∗MP. As with any statistical estimation problem, two important measures of
performance are the estimator’s variance and bias, which are combined as the mean squared error
(MSE). (The MSE is equal to the bias squared plus the variance.) The relative contribution of
variance and bias to MSE is problem- and parameter-specific.

The AV, and LH sampling procedures are usually prescribed for reducing variance. Other
authors have investigated the use of AV and other techniques to reduce the variance of

N−1
N∑

i=1

Qi(x, ωi) + g(x),

which is an unbiased estimate of Eω [Q(x, ω)] + g(x) for an arbitrarily chosen value of x. Here we
are concerned with estimating z∗MP, which is Eω [Q(x, ω)] + g(x) evaluated at x∗MP, the unknown
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optimal solution to MP. Our work was able to derive analytic expressions for the variance of the
estimator z∗MPN

in the context of the newsvendor problem. We show this variance is reduced
under LH, but the effect of AV depends on the problem parameters. We use this example to
provide insight to our computational results, where the variance reduction benefits of LH and AV
are shown to be highly problem dependent.

In addition to variance reduction, we show the AV and LH sampling procedures may also reduce
the bias of z∗MPN

. Under fairly general conditions, the solution to MPN approaches that of MP
with probability 1 as the number of realizations N increases. However, the solution to MPN is
biased in the sense that the expectation of the optimal objective function value of MPN is less than
that of MP :

E(ω1,...,ωN )

[
z∗MPN (ω1,...,ωN )

]
≤ E(ω1,...,ωN+1)

[
z∗MPN+1(ω1,...,ωN+1)

]
≤ z∗MP ∀N. (1)

A related issue is that the optimal solution x∗N (ω1, . . . , ωN ) of MPN may be suboptimal with respect
to the objective function Eω [Q(x, ω)] + g(x) of MP. We refer to:

Eω

[
Q(x∗MPN (ω1,...,ωN )

, ω)
]

+ g
(
x∗MPN (ω1,...,ωN )

)
(2)

as the actual cost of the sample path problem and z∗MPN
as the perceived cost.

Our work was able to show that in the context of the newsvendor problem, AV and LH bring
the both perceived and actual costs closer to z∗MP. (The effect on the perceived cost is equivalent
to reducing the bias of z∗MPN

.) To our knowledge, this was the first quantification of bias reduc-
tion via improved sampling for stochastic programs. This example is again used to motivate our
computational results, where we examine bias reduction in a number of computational examples.
This computational work extends a related paper (author?) [16], which examines the impact of
LH on the bias of z∗MPN

and on an upper bound for z∗MP with a set of empirical examples.

3 Mixed Integer Nonlinear Programs

Many decision problems in scientific, engineering, and public sector applications involve both dis-
crete decisions and nonlinear system dynamics that affect the quality of the final design or plan.
Mixed-integer nonlinear programming (MINLP) problems combine the difficulty of optimizing over
discrete variable sets with the challenges of handling nonlinear functions. MINLP is one of the most
flexible modeling paradigms available for optimization problems. Key applications that MINLP
can accurately model include optimal power flow problems; network design and expansion; reactor
reloading models; and energy storage system design problems. Unfortunately, the wealth of appli-
cations that can be accurately modeled using MINLP is not yet matched by the capability of even
the best solvers for this important class of problems. Algorithms and software often cannot provide
acceptable solutions to practically sized instances in reasonable computing time. Our work in this
proposal was to make progress towards transform MINLP into a paradigm that can not only model
wide varieties of important problems, but also deliver practical solutions to them.

Our first fundamental contribution was the design and implementation of a software package
FilMINT, an implementation of the LP/NLP-BB algorithm for convex MINLP. The software is
among the most effective available solvers for convex instances (author?) [1].
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A second main contribution is from strong reformulation techniques for MINLP. In (author?)
[8], we gave explicit characterization of the convex hull of the union of a point and a bounded
convex set defined by analytic functions and showed that for many classes of problems, the convex
hull can be expressed via conic quadratic constraints, and thus relaxations can be solved via second-
order cone programming. We applied our results to develop tight formulations of mixed integer
nonlinear programs in which the nonlinear functions are separable and convex and in which indicator
variables play an important role. In particular, we gave computational results for three applications
– quadratic facility location, network design with congestion, and portfolio optimization with buy-in
thresholds – that showed the power of the reformulation technique.

Continuing work in this domain includes the design of new primal heuristics for MINLP [3] and
formulating and solving a MINLP for the design of a thermal insulation system [2].

3.1 Outer-Approximation Based Methods

Mixed-integer nonlinear programs are conveniently expressed as

zminlp = min
x∈X,y∈Y ∩Zp

{f(x, y) | g(x, y) ≤ 0}, (MINLP)

where f : Rn+p → R and g : Rn+p → Rm are twice continuously differentiable functions; x and y

are continuous and discrete variables, respectively; and X and Y are compact polyhedral subsets
of Rn and Rp, respectively.

In this proposal, we created an implementation of the LP-NLP based branch-and-bound method
of Quesada and Grossmann. In this method, an outerapproximation of the feasible region is formed
such as

min η (MINLP-OA)

subject to

f(xk, yk) +∇f(xk, yk)T

[
x− xk

y − yk

]
≤ η ∀k = 1, . . . K (3)

gi(xk, yk) +∇gi(xk, yk)T

[
x− xk

y − yk

]
≤ 0 ∀i ∈ M,∀k = 1, 2, . . . K (4)

x ∈ X

y ∈ Y,

where the (xk, yk) are obtained in an iterative manner as described below. (MINLP-OA) is a MILP
problem that is solved using a branch-and-bound method. At each node of the branch and bound
tree, certain components of y may have their bounds fixed, and a relaxation (MINLP-OA-R) is
formed by relaxing the integrality requirements on the variables y. If an integer feasible solution
yk is found when solving (MINLP-OA-R), the following (continuous) nonlinear program is solved:

min{f(x, yk) | gi(x, yk) ≤ 0 ∀i ∈ M,x ∈ X}. (NLP(yk))

The solution of NLP(yk) yields a solution xk, and the objective function f(x, y) and constraints
gi(x, y) are then linearized around (xk, yk), resulting in inequalities of the form (3) and (4). These
inequalities are added to (MINLP-OA-R), and the branch and bound procedure continues.
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Figure 1: Profile of MINLP Solver Performance
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This proposal created a solver called FilMINT by customizing this algorithm using two existing
software toolkits. FilMINT was created by combining the powerful mixed integer linear program-
ming package MINTO with the state-of-the-art NLP software package filterSQP. The algorithm
was further augmented with advanced IP features, such as cutting planes, preprocessing, primal
heuristics, pseudo-cost-based branching, and adaptive node selection strategy. Additionally, im-
proved point-selection schemes were developed for the linearizations required of the algorithm. The
work has been extremely productive, as the performance of the FilMINT solver is competitive with
all other software available for this class of problems. This is depicted graphically in Figure 1, a
performance profile of the solution time on 37 moderately difficult instances taken from a variety of
well-known test sites for instances of MINLP. Performance profiles were introduced to graphically
depicting the relative performance of solvers. Lines in the graph that are high denote the “best”
solvers, and so it is clear from the figure that the noncommercial solvers FilMINT and Bonmin-v2
are the most effective for these instances. The solver QG in the figure is the textbook implemen-
tation of LP-NLP based branch-and-bound method, without additional MIP enhancements, and
MINLP-BB is an implementation of a traditional branch-and-bound method for MINLP.

We note that the performance of Bonmin (version 1) is superior to the commercial packages
DICOPT and SBB. Moreover, a portion of the improvement in the solver Bonmin from (v1) to
(v2) is due to the implementation of cut management ideas developed by the FilMINT team.

3.2 Strong Formulations

When solving mixed-integer linear programs (MILP), it is well-known that having a strong for-
mulation, or a formulation whose relaxation is close to the convex hull of feasible solutions, is of
the utmost importance. It stands to reason that having a strong formulation is equally important
to solve MINLP. Since MINLP contains nonlinear constraints, and most algorithms for solving
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MINLP have a mechanism for solving (continuous) NLPs as subproblems, it is natural to consider
strong (re)-formulations of MINLP that introduce additional nonlinearities to the problem. In this
research, we explored the use of nonlinear reformulations and nonlinear cuts for MINLP. As one
example, we studied MINLPs that are driven by a collection of indicator variables where each
indicator variable controls a subset of the decision variables.

A generic indicator-induced {0-1}-MINLP can be written as

z∗
def= min

(x,z)∈X×(Z∩B|I|)
{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈ M, (xVi , zi) ∈ Si ∀i ∈ I}, (5)

where z are the indicator variables, x are the continuous variables and xVi denotes the collection
of continuous variables (i.e. xj , j ∈ Vi) controlled by the indicator variable zi. Sets X ⊆ Rn and
Z ⊆ R|I| are polyhedral sets of appropriate dimension and Si is the set of points that satisfy all
constraints associated with the indicator variable zi:

Si
def=

{
(xVi , zi) ∈ R|Vi| × B

∣∣∣∣∣ xVi = x̂Vi if zi = 0

xVi ∈ Γi if zi = 1

}
,

where
Γi

def= {xVi ∈ R|Vi| | fj(xVi) ≤ 0 ∀j ∈ Ci, uk ≥ xk ≥ `k ∀k ∈ Vi}

is bounded for all i ∈ I.
A first result obtained was to present a convex hull description of the following set:

Q =
{

w ∈ R, x ∈ Rn
+, z ∈ Bn : w ≥

n∑
i=1

qix
2
i , uizi ≥ xi ≥ lizi, i = 1, 2, . . . , n

}
, (6)

where qi ∈ R+ and ui, li ∈ R for all i = 1, 2, . . . , n. The set Q appears in a number of non-linear
mixed-integer programs as a substructure.

To understand the set Q, we first studied a simpler mixed-integer set with only 3 variables,
which can be obtained by setting n = 1 and q1 = 1 in (6). Let

S =
{

(x, y, z) ∈ R2 × B : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0
}

, (7)

where u, l ∈ R. A preliminary first result is that the convex hull of S is given by

conv(S) = Sc =
{
(x, y, z) ∈ R3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0

}
.

Using concepts prevalent in the mixed integer linear programming literature, this result can be
lifted to a higher-dimensional space. Consider the following extended formulation of Q

Q̄
def=

{
w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ Rn : w ≥

∑
i

qiyi, (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n
}

,

where Si has the same form as the set S in (7), except the bounds u and l are replaced with ui

and li. Note that if (w, x, y, z) ∈ Q̄ then (w, x, z) ∈ Q, and therefore proj(w,x,z)(Q̄) ⊆ Q. On the
other hand, for any (w, x, z) ∈ Q, letting let y′i = x2

i gives a point (w, x, y′, z) ∈ Q̄. Therefore, Q̄ is
indeed an extended formulation of Q, or, in other words, Q = proj(w,x,z)(Q̄).
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Using this insight, we were able to derive the convex hull of Q̄.

Q̄c =
{

w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ Rn : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Sc
i , i = 1, 2, . . . , n

}
.

We also were able to give a convex hull description in the original space of variables:

Qc =
{

(w, x, z) ∈ R2n+1 : w
∏
i∈S

zi ≥
∑
i∈S

qix
2
i

∏
l∈S\{i}

zl, S ⊆ {1, 2, . . . , n} (Π)

uizi ≥ xi ≥ lizi, xi ≥ 0, i = 1, 2, . . . , n
}

.

In is interesting that these (exponentially many) inequalities are both necessary and sufficient to
describe the convex hull of Q in the space of the original variables: conv(Q) = Qc = proj(w,x,z)(Q̄c).

An important generalization of the previous results is to the case of the convex hull of a point
x̄ ∈ Rn and a bounded convex set defined by analytic functions. In other words, using an indicator
variable z ∈ {0, 1}, define W 0 =

{
(x, z) ∈ Rn+1 : x = x̄, z = 0

}
, and

W 1 =
{
(x, z) ∈ Rn+1 : fi(x) ≤ 0 for i ∈ I, u ≥ x− x̄ ≥ l, z = 1

}
where u, l ∈ Rn

+, and I = {1, . . . , t}. We are interested in the convex hull of W = W 1∪W 0. Clearly,
both W 0 and W 1 are bounded and W 0 is a convex set. Furthermore, if W 1 is also convex then

conv(W ) = {p ∈ Rn+1 : p = αp1 + (1− α)p0, p1 ∈ W 1, p0 ∈ W 0, 1 ≥ α ≥ 0}.

The main result is a description of this set in the space of original variables:

Theorem 1 If W 1 is convex, then conv(W ) = W− ∪W 0, where

W− =
{

(x, z) ∈ Rn+1 : fi(x/z) ≤ 0 for i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}

.

Corollary 2 conv(W ) = closure(W−).

This work has already borne great fruit. As an example, the perspective reformulation was
applied on a quadratic-cost uncapacitated facility location problem introduced by Günlük, Lee, and
Weismantel in 2007. The largest of their test instances was solved by Lee, requiring 21,206 CPU-
seconds and 29,277 search nodes. The same instance was solved by using the strong-reformulation
in only 44 branch-and-bound nodes and 23 CPU-seconds, a speedup factor of more than 900. This
improvement is impressive, but not surprising to MIP researchers, who for decades have understood
the importance of strong formulations.

4 Mixed Integer Linear Programming

Our primary work in the area of mixed integer linear programming (MILP) has been on the novel
combination of isomorphism-pruning and enumeration to improve bounds on an important problem
in coding theory [10], and on the development of a new branching method called orbital branching
in [18]. The generalization of this method to branching to constraints [19] has solved to optimality
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instances asking for the smallest incidence width of Steiner Triple Systems that have been unsolved
for decades.

To concisely present the results of work, consider a covering MILP of the form

min
x∈F

{eT x}, with F def= {x ∈ {0, 1}n | Ax ≥ e}, (8)

where A ∈ {0, 1}m×n and e is a vector of ones of conformal size. The restriction of our work to set
covering problems is mainly for notation convenience, but also of practical significance, since many
important set covering problems contain a great deal of symmetry.

The focus of our MILP research is on cases when (8) is highly-symmetric, a concept that can
be formalized as follows. Let Πn be the set of all permutations of In = {1, . . . , n}, so that Πn is
the symmetric group of In. For a vector λ ∈ Rn, the permutation π ∈ Πn acts on λ by permuting
its coordinates, a transformation that we denote as

π(λ) = (λπ1 , λπ2 , . . . λπn).

Since all objective function coefficients in (8) are identical, permuting the coordinates of a solution
does not change its objective value, i.e. eT x = eT (π(x))∀x ∈ F . The symmetry group G of (8) is
the set of permutations of the variables that maps each feasible solution onto a feasible solution of
the same value. In this case,

G def= {π ∈ Πn | π(x) ∈ F ∀x ∈ F}.

Typically, the symmetry group G of feasible solutions is not known. However, by closely examining
the structure of the problem, many of the permutations making up the group can be found, and
this subgroup of the original group G can be employed in its place. Specifically, given a permutation
π ∈ Πn and a permutation σ ∈ Πm, let A(π, σ) be the matrix obtained by permuting the columns of
A by π and the rows of A by σ, i.e. A(π, σ) = PσAPπ, where Pσ and Pπ are permutation matrices.
Consider the set of permutations

G(A) def= {π ∈ Πn | ∃σ ∈ Πm such that A(π, σ) = A}.

For any π ∈ G(A), if x̂ ∈ F , then π(x̂) ∈ F , so G(A) forms a subgroup of G, and the group G(A) is
the group used in our computations. The group G(A) can act on an arbitrary set of points Z, but
in our work, it acts on either Rn or {0, 1}n.

A powerful idea called isomorphism pruning examines the symmetry group of the problem in
order to prune isomorphic subproblems of the enumeration tree. The branching method introduced
as a result of our work, orbital branching, also uses the symmetry group of the problem. However,
instead of examining this group to ensure that an isomorphic node will never be evaluated, the
group is used to guide the branching decision. At the cost of potentially evaluating isomorphic
subproblems, orbital branching allows for considerably more flexibility in the choice of branching
entity than isomorphism pruning. Furthermore, orbital branching can be easily incorporated within
a standard MIP solver and even exploit problem symmetry that may only be locally present at a
nodal subproblem.
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For a point z ∈ Z, the orbit of z under the action of the group Γ is the set of all elements of Z
to which z can be sent by permutations in Γ, i.e.,

orb(Γ, z) def= {z′ ∈ Z | ∃π ∈ Γ such that z′ = π(z)} = {π(z) | π ∈ Γ}.

Orbital branching is based on the following simple observations. If λT x ≤ λ0 is a valid inequality for
(8) and π ∈ G, then π(λ)T x ≤ λ0 is also a valid inequality for (8). In constraint orbital branching,
given an integer vector (λ, λ0) ∈ Zn+1, a base branching disjunction of the form

(λT x ≤ λ0) ∨ (λT x ≥ λ0 + 1)

is used, simultaneously considering all symmetrically equivalent forms of λx ≤ λ0. Specifically, the
branching disjunction is ∨

µ∈orb(G,λ)

µT x ≤ λ0

 ∨

 ∧
µ∈orb(G,λ)

µT x ≥ λ0 + 1

 .

Further, by exploiting the symmetry in the problem, one need only consider one representative
problem for the left portion of this disjunction. That is, either the “equivalent” form of λx ≤ λ0

holds for one of the members of orb(G, λ), or the inequality λx ≥ λ0 + 1 holds for all of them. This
is obviously a feasible division of the search space. We have demonstrated that for any vectors
µi, µj ∈ orb(G, λ), the subproblem formed by adding the inequality µT

i x ≤ µ0 is equivalent to the
subproblem formed by adding the inequality µT

j x ≤ µ0. Therefore, we need to keep only one of
these representative subproblems, pruning the | orb(G, λ)| − 1 equivalent subproblems. The orbital
branching method introduced in our first work [18], is a special case where (λ, λ0) = (ek, 0).

To demonstrate the effectiveness of orbital branching, a series of computational experiments
were done. Table 2 shows the result of this computational experiment. The results show that
the number of subproblems evaluated by orbital branching and CPU times required to solve the
instances are quite comparable. Orbital branching proves to be faster than the powerful commercial
solver CPLEX in all but two cases, while in all cases the number of evaluated nodes is remarkably
smaller.

5 Conclusions

This report described the progress made on optimization algorithms and software for solving prob-
lems containing uncertainty and nonconvexity. A complete list of publications is given in the
bibliography section. Support from the Department of Energy under grant agreement DE-FG02-
05ER25694 is gratefully acknowledged.
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