Aerosol climate effects and air quality impacts from 1980 to 2030

PDF Version Also Available for Download.

Description

We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B ... continued below

Creation Information

Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim et al. November 26, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggest that future climate projections warrant particular scrutiny.

Source

  • Journal Name: Environmental Research Letters; Journal Volume: 3; Related Information: Journal Publication Date: 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-461E
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 934719
  • Archival Resource Key: ark:/67531/metadc898774

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 26, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Jan. 4, 2017, 4:57 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim et al. Aerosol climate effects and air quality impacts from 1980 to 2030, article, November 26, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc898774/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.