TOUGH+/GasH20 study of the effects of a heat source buried in theMartian permafrost

PDF Version Also Available for Download.

Description

We use TOUGH+/GasH2O to study the effects of a heat sourceburied in the Martian permafrost to evaluate the possibility ofestablishing a wet zone of liquid water, in which terrestrialmicroorganisms could survive and multiply. Analysis of the problemindicates that (1) only a limited permafrost volume (not exceeding 0.35 min radius) is affected, (2) a "wet" zone with limited amounts of liquidwater de-velops (not exceeding 8 and 0.7 kg for a 250 W and a 62.5 Wsource, respectively), (3) the wet zone per-sists for a long time,becomes practically stationary after t = 20 sols because of venting intothe Martian atmosphere, and its ... continued below

Creation Information

Moridis, George J. & Pruess, Karsten May 12, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We use TOUGH+/GasH2O to study the effects of a heat sourceburied in the Martian permafrost to evaluate the possibility ofestablishing a wet zone of liquid water, in which terrestrialmicroorganisms could survive and multiply. Analysis of the problemindicates that (1) only a limited permafrost volume (not exceeding 0.35 min radius) is affected, (2) a "wet" zone with limited amounts of liquidwater de-velops (not exceeding 8 and 0.7 kg for a 250 W and a 62.5 Wsource, respectively), (3) the wet zone per-sists for a long time,becomes practically stationary after t = 20 sols because of venting intothe Martian atmosphere, and its thickness is limited and decreases slowlyover time, (4) a "dry" zone (where SG>0.9) evolves, continues toexpand (albeit slowly) with time, but its extent remains limited, and (5)the ice front surrounding the wet zone is self-sharpening. For a range ofinitial conditions investigated, evolution of the liquid water massoccurs at approximately the same rate, reaches roughly the same maximum,and occurs at about the same time (10 to 20 sols; 1 sol = 24.39hours).

Subjects

Keywords

STI Subject Categories

Source

  • TOUGH Symposium 2006, Berkeley, CA, 15-17 May2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--60364
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 923641
  • Archival Resource Key: ark:/67531/metadc898743

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 12, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 29, 2016, 7:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moridis, George J. & Pruess, Karsten. TOUGH+/GasH20 study of the effects of a heat source buried in theMartian permafrost, article, May 12, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc898743/: accessed December 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.