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Abstract 

 
Drainage of water from the region between an advancing probe tip and a flat 
sample is reconsidered under the assumption that the tip and sample surfaces are 
both coated by a thin water  “interphase” (of width ~a few nm) whose viscosity is 
much higher than the bulk liquid’s. A formula derived by solving the Navier-
Stokes equations allows one to extract an interphase viscosity of ~59 KPa-sec (or 
~6.6×107 times the viscosity of bulk water at 25C) from Interfacial Force 
Microscope measurements with both tip and sample functionalized hydrophilic by 
OH-terminated tri(ethylene glycol) undecylthiol, self-assambled monolayers.  
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Introduction –  
Surprisingly long-ranged “hydration forces” observed between solids separated by 
water are thought to result from the formation of nm scale, structured-liquid 
surface coatings or interphases.1 Hydrophobic solids mutually attract, for example, 
expelling several nm of water between them. This remarkable phenomenon is 
attributed to low-density or gaseous interphase formation at hydrophobic surfaces.2 
Hydrophilic surfaces experience repulsive hydration forces, but the nature of their 
interphases is less well established. They may1 or may not3 be denser than bulk 
water and their viscosity may or may not be greater, or even much greater.4,  5

Deepening our understanding of water interphases is important because of their 
biological and geophysical implications, and their potential importance in 
nanofluidic technologies. 
 
Kim, Kushmerick, Houston and Bunker’s (KKHB’s) 6 Interfacial Force Microscope 
(IFM) 7 measurements of viscous drag on a hydrophilic probe tip approaching a 
hydrophilic surface in water provide an example where dissipation in water 
adjacent to a hydrophilic surface appears to be unusually strong, perhaps indicating 
the formation of “solid-like” or “slushy” interphases. With both the Au sample and 
the IFM’s Au tip functionalized by OH-terminated tri(ethylene glycol) 
undecylthiol [or “EG3OH”] self-assembled monolayers, KKHB report that within 
about 5 nm of contact, energy dissipation in water is strongly dependent on tip 
speed. According to their quantitative analysis, the data imply an interphase 
viscosity that is a factor of  ~106  larger than the viscosity of bulk water. 6  
 
This conclusion, however, is based on a somewhat ad hoc generalization of Chan 
& Horn’s (CH’s) hydrodynamic theory of drainage of a liquid thin film from 
between two approaching solids.8 The purpose of the present work is to place the 
required generalization on a firm footing, and then to revisit the application of 
theory to KKHB’s data. The result appears to confirm the applicability of bulk 
hydrodynamics to KKHB’s drainage experiment, but also points to a need for 
higher quality data.  
 
CH’s derivation (an application of Reynolds’ theory of lubrication9) yields a 
repulsive hydration force 6πηR2v/D, at tip-sample separation, D, and approach 
velocity, v, for a tip whose radius of curvature is R, in a liquid of viscosity, η. This 
force-law, however, is incapable of describing KKHB’s result (see Fig. 1) that the 
IFM tip only experiences a large force within ~5 nm of the sample surface, and is 
much smaller outside that range. KKHB viewed the short-range repulsion as a 

 3



direct manifestation of thin, viscous interphases, on tip and sample, and guessed 
that the cutoff of the hydration force at D0 ~5nm could be adequately represented 
by modifying the CH force law to 6πηR2v(1 – D/D0)/D. Deciding whether this 
guess is correct is the first objective of the present work. That it might not be is 
suggested by the fit in Fig. 2, reproduced from Ref. 6, Fig. 5. In this figure, the raw 
data of Fig. 1 has been corrected for the compliances of the EG3OH SAM’s and 
the Au tip and sample (see Ref. 6, for an explanation of how), and the resulting 
hydration force fitted to 6πηR2v(1 – D/D0)/D. Notice that the curvature of the data 
is not well described by the theoretical, solid curves. An improved theoretical 
discussion is therefore warranted. This is the subject of the next sections of this 
article. It yields a simple modification of the force formula KKHB used, to 6πηR2v 
(1 – D/D0)

2/D.  
 
Fig. 3 shows that this corrected force formula allows much better fits to the IFM 
force vs. separation data, and thus, yields an improved (and actually, a 
considerably increased) estimate of the interphase viscosity. However, closer 
examination of the figure makes plain that the measured forces for different speeds 
vanish at different relative displacements. This is a problem, because in the 
drainage theory, the hydration force scales directly with tip speed. Therefore the 
displacement at which the force reaches zero ought to be the same for all speeds.  
 
More data is wanted, accordingly, to determine the source of the discrepancy, for 
example to learn if inhomogeneity of the self-assembled monolayers coating the tip 
and sample is the key problem. Measurements at more than just two approach 
speeds would also be welcome. 
  
Hydration force for drainage with a spatially-varying viscosity -  
To analyze KKHB’s results quantitatively, one must derive a force vs. separation 
formula appropriate to the circumstance that fluid viscosity is not constant, but 
dependent on distance from sample or tip (specifically, higher in the slushy surface 
coatings than in bulk water). Such a formula is implicit in the “modified Reynolds 
equation” developed by Tichy10 to deal with lubrication when asperities on 
opposing, functionalized surfaces overlap. One is derived explicitly in this note 
through a straightforward elaboration beyond the assumption of a spatially 
invariant viscosity of Chan and Horn’s (CH’s) thin-film “drainage” theory.8 
Application of the new derivation to the IFM data6 requires an upward revision (by 
a factor of 33) of KKHB’s estimated interphase viscosity, to ~59 KPa-sec, or 
6.6x107 times the viscosity of bulk water at 25C.11  
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The lubrication approximation –  
CH applied the “lubrication approximation” to the Navier-Stokes (NS) equations to 
the motion of a curved surface toward a planar one.8 They assumed both surfaces 
to be rigid and the fluid to have a constant viscosity. In what follows, allowing for 
a spatially-varying viscosity, I derive general asymptotic results applicable to a tip 
nearly at contact with the planar sample and to a separation such that the slushy 
coatings barely touch. In addition, for a simple model − a step-function change in 
viscosity at the interphase boundary − I arrive at an explicit formula for the 
hydrodynamic force on a tip.  
 
The lubrication approximation is defined by the following assumptions:8,9 1) fluid 
velocities are sufficiently small that terms in the N-S equation quadratic in 
velocities can be ignored, 2) the fluid velocity normal to the plane surface 
(henceforth, the z-direction) is small compared to the velocity parallel to it, 3) the x 
and y variation of the velocity parallel to the plane surface (which by convention 
lies in an x-y plane) is weak compared to its variation along z, and 4) the pressure 
gradient along z is negligible. In addition, for the analysis of KKHB’s data,6 the 
radius of curvature of the curved (i.e., the tip) surface is taken to be large compared 
to the distance between it and the plane surface and the viscosity is presumed to be 
a function only of the distance from either surface. Beyond the lubrication 
approximation, I also require in what follows that the fluid flow be steady-state, 
i.e., all velocities are constant in time. 
 
For hydrophilic surfaces, it is reasonable to impose “stick” boundary conditions at 
each surface, i.e., to require the parallel component of the fluid velocity to vanish 
there. Because of the large radius of curvature of the curved surface, this boundary 
condition may be applied to the velocity components in the x- and y-directions, 
even though the tangent to the curved surface necessarily has a small z-component. 
Similarly, one may ignore x- and y-derivatives of the viscosity that are non-zero 
because its interphase conforms to the curved surface. 
 
General Derivation of Drainage Formulas –  
Given these considerations, the momentum equation for fluid flow, as the curved 
surface approaches the planar surface, is, 8

 

( ) Pv
z

z
z TT ∇=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ rrη                              ,                                             (1) 
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where �(z) is the spatially varying viscosity, ( )zvT

r
 is the parallel velocity of the 

fluid and P(z) is the fluid pressure. Eq. 1 integrates to yield an explicit, general 
result, 
 

( ) ( ) ( ) PzCzdzzv T

z

C

T ∇−= ∫
rr

'/'' 2

1

η                  ,                                             (2) 

 
where C1 and C2 are constants of integration to be determined by applying 
boundary conditions. Let the planar surface lie at z=0. Then one can satisfy the 
stick boundary condition there, ( ) 00 =Tv

r
, by setting C1=0. Supposing the curved 

surface to lie at z=H(x,y) [or z=H(r) for a cylindrically symmetric tip], one finds 
that,  
 

  

( )

( )zdz

zzdz

C
H

H

η

η

/

/

0

0
2

∫

∫
=                                       ,                                                     (3) 

by applying the second stick boundary condition, ( ) 0=HvT

r
. Note that if the upper 

and lower surfaces are of identical material and structure, then Eq. 3 yields 
C2=H/2, by symmetry. More generally, C2 is the center of gravity of the inverse 
viscosity, which I henceforth call ( )yxZ , . 
 
Following Chan & Horn,8 I now integrate the continuity equation,  
 

( )zv
z

v
TT

z rr
⋅∇−=

∂
∂

                             ,                                             (4) 

 
(wherein the subscript T stands for “transverse,” i.e. x- and y-derivatives only). 
Once again applying the stick boundary condition at z=0, this yields, 
 

( ) ( )( )
( ) P
z

yxZz
dzdzzv T

zz

Tz ∇
−

⋅∇−= ∫∫
rr '

00 ''

,''
'''

η               ,                     (5) 

 
or, interchanging the order of z' and z'' integration, 
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( ) ( )( )( )
( ) P
z

zzyxZz
dzzv T

z

Tz ∇
−−

⋅∇−= ∫
rr

0 '

','
'

η               .                   (6) 

 
At z=H, the z-component of the fluid velocity must equal the velocity of the curved 
surface. Specializing to the case in which the curved surface is that of a parabolic 
cylindrical tip, whose curvature radius is R and whose apex lies a distance D above 
the planar surface, one has,  
 

             H(x,y) = H(r) = D + r2/2R                                               (7) 
 

near the tip apex, where r2 = x2 + y2 . In consequence, )(),( rZyxZ = , and, 
equating the tip speed, dD/dt with the normal velocity of the fluid at the tip surface, 
vz(H), Eq. 6 simplifies to, 
 

( )
( )

( )
( ) ⎟

⎠
⎞

⎜
⎝
⎛−

+
−

= ∫ dr

dP
r

dr

d

rz

Zz
dz

dr

dP

dr

dH

H

ZH

dt

dD H 1

0

222

ηη       .        (8) 

 
The two terms on the right-hand-side of Eq. 8 combine, using the definition of 

Z in Eq. 3, to give, 
 

                   ⎟
⎠
⎞

⎜
⎝
⎛=

dr

dP
rrg

dr

d

rdt

dD
)(

1
                                            ,         (9) 

 
where g(r) is defined by, 

( ) ( )( )
( )

( )

∫
−

≡
rH

z

rZz
dzrg

0

22

η                                .                          (10) 

 
Eq. 9 is a differential equation for P(r), which, applying the boundary condition 
that P(0) be finite, has the solution, 
 

( ) ( )∞+−= ∫
∞

P
dt

dD

rg

r
drrP

r )'(2

'
'                     .                          (11) 
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From Eq. 11, the dissipative hydrodynamic force in the normal direction can be 
obtained as the integral of the stress over the plane surface according to (see Ref. 
8), 
 

( ) ( )
0

2 2
=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−∞−= ∫
z

z
H z

v
PrPrdF η                  .                     (12) 

 
The last term in the integrand vanishes, according to Eq. 5. (This is a consequence 
of the stick boundary condition at the sample surface and the equation of 
continuity.) Thus, substituting Eq. 11 into Eq. 12, one obtains the general formula 
for the force, 
 

( ) dt

dD

rg

r
drFH

3

02 ∫
∞

−=
π

                                     .                       (13) 

 
In the next section, I evaluate this expression for FH, the quantity KKHB measured, 
given simple model assumptions.  
 
Hydration force for a step-function model viscosity –  
To begin, because KKHB’s tip and sample surface were chemically identical 
(EG3OH-coated Au), the viscosity must have been symmetric. That is, 
 

         ( ) ( )zHz −=ηη                                           .                      (14) 
 

This symmetry means (cf. above) that 2/HZ =  and it allows Eq. 10 to be 
rewritten as, 
 

( ) ( )( )
( )

( )

∫
−

=
2/

0

22/
2

rH

z

rHz
dzrg

η                       .                          (15) 

 
To proceed farther, one needs a model viscosity function. The simplest6 
corresponds to the assumption that the viscosity is large and equal to ηs (s for 
“slush”) if the argument of η is between 0 and w, and equal to ηw  (w for “water”) if 
it lies between w and H(s)/2. This corresponds to the schematic of Fig. 4. Notice in 
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the figure that pure “slush” occupies a cylinder surrounding the tip apex (at r=0) if 
D is small enough. How small does it have to be? Evidently, D must be smaller 
than 2w, so that the tip and sample slush regions overlap. This being the case, the 
pure slush cylinder radius is given by D − w + r2/2R = w, or r2 = 2R (2w − D). 
Thus the s-integral of Eq. 13 should be written as  
 

 

( )

( ) ( ) ( )rg

r
dr

dt

dD

rg

r
drF

DwR

DwR

H

3

22

322

0 22 ∫∫
∞

−

−

−−=
ππ

               .        (16) 

 
In the first term, since there is pure slush over the entire range of z, I obtain for 
g(r),  
 

                                      .                                (17) ( ) srHrg η12/)(3=
 
In the second term, the z-integral covers both slush and bulk water regions, and 
g(r) is instead, 
 

( ) ( ) ( )( ) ( ) ( )( )
( )

∫∫ −+−=
2/

2

0

2 2//12//1
rH

w

w

w

s zrHdzzrHdzrg ηη   .  (18) 

 
What is interesting and important about this result is that if ηw  << ηs  , then the 
second term on the right hand side of Eq. 18 dominates the first. This makes the 
second term on the right hand side of Eq. 16 small. Thus, the pure slush cylinder 
dominates the value of FH. 
 
Because it is important for estimating the leading contribution of ηw to FH, I 
temporarily retain all contributions to g(r). Thus, Eq. 18 yields, 
 

( ) ( ) ( )[ ] ( )[ ]{ } ( ) ( )[ ]333 2/3/12/2/3/1 wrHwrHrHrg ws −+−−= ηη . 

(19) 
 
Now I evaluate the right-hand-side of Eq. 16, starting with the easy first term. 
Substituting from Eqs. 7 and 17, it takes the form  
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( )
( )

32

322

0 )2/(
6

RrD

r
dr

dt

dD
F

DwR

s
c

H +
−= ∫

−

πη                  ,                (20) 

 
where the superscript “c” is a reminder that this term comes from the “cylinder” of 
pure slush. The integral can be performed trivially, yielding, 
  

( )
22

2
16 ⎟

⎠
⎞

⎜
⎝
⎛ −−=

w

D

dt

dD

D

R
F s

c
H πη                                 ,                  (21) 

 
which is CH’s formula times a quadratic cutoff as D→ 2w. This cylinder term, as 
noted above, is the dominant contribution to the hydrodynamic dissipative force in 
the limit ηw  << ηs   . 
 
To estimate the contribution of the second term on the right hand side of Eq. 16 
(with superscript “oc” for “outside the cylinder”), I substitute from Eq. 19 for g(r). 
The result is that, 
 

( )

( ) ( )( )3232

3

22 22/1)2/(
6

wRrDRrD

r
dr

dt

dD
F

DwR

w
oc

H
−+−++

−= ∫
∞

− ρρ
πη   

, (22) 
 
where ρ≡ηw  / ηs . To evaluate the integral of Eq. 22 to leading order in the limit 
ρ→0 requires some analysis. The reason is that for ρ=0, the integrand diverges 
strongly at the lower integration limit, which invalidates a Taylor expansion in ρ. 
To proceed, then, let  
 

2
4/2 D

wxRr −+=                                                      .                 (23) 

Substituting this variable change into Eq. 22, implies that, 
 

( )

( ) ( ) 33
0

2

1
26

xxw

D
wx

dx
dt

dD
RF w

oc
H ρρ

πη
−++

−+
−= ∫

∞

              .       (24) 
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For the sake of approaching the limit ρ→0, I now make the further variable 
change, x=ρ1/3wσ, yielding, 
 

( )

( ) 233/533/433

3/1

0

3/12

331
26

σρσρσρ

σρ
σρπη

www

D
ww

wd
dt

dD
RF w

oc
H +++

−+
−= ∫

∞

  .    

(25) 
 
This formula allows one to factor a ρ out of the denominator and then let ρ 
approach zero. The result, recalling the definition, ρ≡ηw /ηs, is that to leading order 
in the small water viscosity,  
 

            
( ) ⎟

⎠
⎞

⎜
⎝
⎛ −−=

w

D

dt

dD

w

R
F sw

oc
H 2

1
33

4 2
3/23/1

2

ηηπ
                  .                 (26) 

 
Collecting terms, one learns, finally, that if the slush viscosity is much bigger than 
that of bulk water, then, 
 

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −−=

w

D

dt

dD

w

R

w

D

dt

dD

D

R
F swsH 2

1
33

4

2
16

2
3/23/1

222

ηηππη      .   

(27) 
 
In the KKHB’s experiments,2 with ηw  / ηs ~ 10-6, the second term is negligible, 
other than very close to D=2w. 
 
Asymptotic results for the hydration force –  
Before leaving the force formula of Eq. 27, it is important to see why the dominant 
first term vanishes quadratically, i.e., as (1− D/2w)2, when the cylinder is barely in 
the slush-overlap region. (As mentioned in the Introduction, in the original KKHB 
paper,6 a linear behavior was hypothesized.) The reason is that the cylinder 
contribution to the hydrodynamic force is (cf. Eqs. 11 and 12), 
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( )

( )

dr

dP
drrF

DwR
c

H ∫
−

=
22

0

2π                            .                       (28) 

 
Since P is analytic at r=0, it must vary as a+br2+…, at small r, where a and b are 
constants. Thus dP/dr is proportional to r, to leading order, and the integral of Eq. 
28 to (2w − D)2. 
 
The explicit results obtained for the hydration force to this point refer to an 
obviously oversimplified model of the spatial variation of the viscosity, i.e., a step-
function switchover from “slush” to “water” dissipation. For a general viscosity 
function, one can derive explicit asymptotic results, which may, in the end prove 
more valuable.  
 
The first result concerns the behavior of the hydration force near D=0. In that limit, 
Eq. 16 becomes  

( ) dt

dD

rg

r
drF

Rw

H

34

02 ∫−=
π

                ,        (29) 

 
where I retain the assumption that the slushy region has width w and drop the 
contribution from outside the corresponding pure slush cylinder.  To evaluate g(r), 
I rewrite Eq. 15, exactly, as 

 ( ) ( )∫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=

2/
2

1

0

2
2

3

2

2/
2

1

2
R

v

Du

R

v
u

duDrg
η          ,              (30) 

 
where v ≡ r/D½ . Note that in Eq. 30, there is no harm in setting D=0 in the 
argument of η, yielding the asymptotic result, upon substitution of Eq. 30 into Eq. 
29, 
 

( )
dt

dD

D

R
FH

2

06πη−=                 .        (31) 

 
The second general asymptotic result is for D slightly smaller than 2w. In this limit, 
Eq. 16 becomes, 
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                 ( )22 2
)0(

1

2
Dw

gdt

dD
RFH −−=

π
               .        (32) 

 
To evaluate g at r=0, I start from Eq. 15 and easily derive,  
 

                    ( ) ( )
( )∫

−
=

1

0

23

2/

1

4
0

Du

u
du

D
g

η                       .       (33) 

 
This is as far as one gets for a general viscosity function. Eq. 33 does show, 
however, that if the viscosity approaches that of water gradually, instead of 
stepwise at the slush edge, then the quadratic dependence of the hydration force 
may be modified. For example, suppose the viscosity of water is zero, to a good 
approximation, and that the slush viscosity diminishes to zero linearly, according 
to  
 

( ) ( )wzz s /1−=ηη                 .        (34) 

 
Then the vanishing of the viscosity at u=1 in the integrand of Eq. 33 gives rise to a 
logarithmic singularity of g(0) at D=2w. As a consequence, the hydration force 
varies as  
 

( )1/2ln

1
1

2

2

22

−
⎟
⎠
⎞

⎜
⎝
⎛ −−=

DwD

w

dt

dD

D

R
F sH ηπ

               .        (35) 

 
This is an important result, not because data at present suggest the viscosity drops 
off linearly, but because it exemplifies the possibility that highly accurate 
measurements of FH vs. D   might reveal the detailed spatial dependence of the 
viscosity. 
 
Comparison of drainage theory to KKHB’s experiment – If the hydrodynamic, 
step-function interphase model is a faithful description of KKHB’s IFM 
experiments,6 then observed forces, F, versus separations, D, should lie on curves 
of the form (cf., Eq. 21),  
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                        ( )

2

2

)(
1

)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
=

vw

vbD

vbD

av
F      ,              (36) 

where a, b(v), and w(v) are fit parameters and v is the tip-sample approach speed.  
 

According to Eq. 21,  , where R is the tip radius and η26 Ra sπη= s  is the 

interphase viscosity. This is why I represent a as independent of tip speed in Eq. 
36.  
 
In contrast, I allow b(v), the position where the force tends asymptotically to 
“infinity,” to depend on v. This may seem surprising, given that in Fig. 2 (copied 
from Ref. 6) only one vertical asymptote is shown for the two approach speeds. 
Fig. 2 was drawn that way because “relative” displacement on its x-axis was meant 
to have been defined so that the displacements where the tip and sample first touch, 
would line up.12 Close reexamination of the data, however, reveals that this goal 
was not quite achieved. Therefore, in revisiting the data of Ref. 6, I have allowed 
the vertical asymptotes, b(v), to differ for the two tip speeds. 
 
The interphase width, w, a static property of the near-surface water, should not be a 
function of tip speed in Eq. 36. Nonetheless, given that Ref. 6’s measurements for 
the two tip speeds were performed over different regions of a presumably 
somewhat heterogeneous SAM, it is not inconceivable that different values of w 
would have emerged from the two measurements.13 In any event, i.e., whatever the 
reason may be, further reexamination of Fig. 2 makes plain that the tip-sample 
separation where the force vanished was not the same for the two tip speeds. 
Accordingly, I have allowed w to be different for the two values of v. 
 
The search for parameters that minimize the residual,  
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is relatively straightforward, as it is strongly constrained by the many data points 
KKHB reported for v=1.3 nm/sec. Figs. 3 and 5 illustrate the quality of the fit 
corresponding to a = 0.277 µN-sec, b(1.3 nm/sec) = 1.31 nm, b(7.3 nm/sec) = 0.45 
nm, w(1.3 nm/sec) = 2.1 nm, w(7.3 nm/sec) = 4.1 nm.  
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In Fig. 3, the force data are plotted directly against displacement, and the solid 
curves are drawn using the above parameters in Eq. 36. In Fig. 5, F is plotted 

versus ( )
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. In this linear graph of the F vs. D relation, the 

equality of a for the two tip speeds is easy to appreciate. 
 
The value of a derived from fitting, 0.277 µN-sec, together with the known tip 
radius, R=0.5µm, yields the corrected, measured interphase viscosity, 59 KPa-sec.  
This is 6.6 × 107 greater than the viscosity of bulk water11 (and 33 times larger than 
the result initially reported in Ref. 6).  
 
Given that the interphase widths measured at two different tip speeds, w(v),  were 
not equal, but rather 2.1 and 4.1 nm for v = 1.3 and 7.3 nm/sec, it is reasonable to 
view the final numerical results with a certain skepticism. The difference of 2.0 nm 
in the interphase widths for the two speeds is anything but small compared to the 
absolute values. We can confidently conclude that the interphase width is a few nm 
and its viscosity is 107 - 108 times that of bulk water. Beyond that, the analysis 
makes clear that more data from better-characterized surfaces are needed. 
 
Summary –  
In the lubrication approximation, the Navier-Stokes equations are susceptible to a 
simple solution for the force that resists tip-sample approach, even if the viscosity 
is a spatially-varying quantity. If the interphases on the tip (of curvature radius R) 
and sample surfaces can be described as regions of a given width, w, wherein the 
viscosity, ηs, is constant and much higher than in bulk water, then the necessary 
quadratures can be performed explicitly, and the force vs. separation curve is given 
by Eq. 21,  

( )
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⎛ −−=

w

D

dt
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D

R
F s

c
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Even if the viscosity variation is more complicated, indeed, even if its variation is 
not known, the force near zero separation can be specified. It is given by Eq. 31,  
 

( )
dt

dD

D

R
DFH

2

06 =−= πη                 .        (31) 
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KKHB’s measurements for two different approach speeds obey these equations at 
small separations, D, but with somewhat different values of w. One may hope that 
further experiment will eliminate this discrepancy, perhaps through averaging over 
surface inhomogeneities. The Navier-Stokes solution presented here implies that a 
force vs. separation measurement can provide information on the spatial variation 
of the viscosity, in principle. This result stands as a further invitation to try to 
acquire the highest quality data. 
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Fig. 1 – After Ref. 6, for a gold tip and sample in water, each functionalized by an 
HS(CH2)11(OCH2-CH2)3OH self-assembled monolayer, the normal force on the tip as a function 
of its velocity, as measured using an IFM 
 
 

 
Fig. 2 – After Ref. 6, for a gold tip and sample in water, each functionalized by an 
HS(CH2)11(OCH2-CH2)3OH self-assembled monolayer, data points representing the normal force 
on the tip as a function of its velocity, as measured using an IFM and corrected for the 
compliances of the SAM’s and of the Au tip and sample, and lines indicating fits of 6πηR2v(1/D 
– 1/D0) to the data. 
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Fig. 3 – For a gold tip and sample in water, each functionalized by an HS(CH2)11(OCH2-
CH2)3OH self-assembled monolayer, data points representing the normal force on the tip as a 
function of its velocity, as measured using an IFM and corrected for the compliances of the 
SAM’s and of the Au tip and sample, and lines indicating fits of the force formula derived here 
[see Eq. 21] to the data.  “D” is the “relative displacement” as in Fig. 2. 
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Fig. 4 - When the tip apex is within 2w of the planar sample surface, the interphase or “slush” 
regions associated with the two surfaces overlap, giving rise to unusually large dissipative 
forces. 
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Fig. 5 – For a gold tip and sample in water, each functionalized by an EG3OH self-assembled 
monolayer, the corrected normal force vs. separation and velocity data of Fig. 3, replotted with 
the x-axis rescaled according to Eq. 21. The linearity of the data, after this rescaling, shows that 
Eq. 21 is a good representation of the measured force versus tip-sample separation and approach 
speed. For the data corresponding to tip velocity –1.3 nm/sec, the rescaling of the x-axis was 
done with b=1.31 nm and w=2.1 nm. For the data taken at –7.3 nm/sec, I used b=0.45 nm and 
w=4.1 nm. The slope of the solid line is 0.277 µN-sec. 
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