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Introduction

The existing theory of fundamental sub-atomic particle interactions (the Standard Model)
accounts for a difference in the interactions between matter and anti-matter through
a phenomenon known as “CP violation”. From this model we can derive how such a
difference leads to the dominance of matter in the Universe. From experiments of the
past and, with larger accuracy from modern experiments, such as the B-factories, this
difference has been found to be smaller, by orders of magnitude, than the observed matter
asymmetry in the Universe. This is one of the most evident inconsistencies of the Standard
Model in describing the fundamental laws that lead to the actual Universe.

Though most of the experimental measurements of the properties of the sub-atomic
particles has precisely agreed with Standard Model predictions, a limitation of this model’s
construction is that it is not the fundamental theory, but is rather what is known as an “ef-
fective” theory describing phenomena to certain distance (or, equivalently, energy) scale.
The physics of smaller distance (or higher energy) processes are obscured in parameters
which must be measured. What’s more, we know that not only the Standard Model is
incomplete, but that more importantly, there is physics beyond it which necessarily must
explain not understood phenomena.

The main road to go beyond the Standard Model is observing an inconsistency within
it. Since the matter/anti-matter difference incorporated in the Standard Model is mani-
fested in merely one parameter, it is an excellent candidate for revealing such an incon-
sistency. Furthermore our most likely predictions of the physics beyond the Standard
Model generally provide more sources of CP violation (for example in Supersymmetric
extensions of it). Therefore investigations of the matter/anti-matter asymmetries hold
great prospect for providing hints of what lies beyond the Standard Model.

In the previous decade, two particle accelerators were specifically built to study CP
violation in the properties of a particle which is an excellent probe of such phenomena:

the B meson. These colliders, known as asymmetric “B-factories”, provide abundant
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samples of this particle in a clean environment to perform detailed measurements of its
decays.

One of the primary goals of these experiments is to look for inconsistencies in the
Standard Model picture of CP violation. Already, they have established that the CP
violation in B meson decays is non-zero measuring with high precision the angle g of
a triangle whose area is related to the amount of CP violation: sin23 = 0.674 & 0.026
(89, 90].

With the current precision, the Standard Model appears to correctly predict the value
of B. In this decade, as the B-factories accumulated hundred of millions of B decays,
rare B decays can also be investigated, and their CP violation measured. This work focus
on a set of rare B decays involving the elementary transition of the b quark to s quark.
In the Standard Model they are sensitive to (3, but, if this model is only a low energy
manifestation of a more general theory where more CP violation sources are present,
significant deviations from the predicted asymmetry could arise.

The analysis of the most relevant of these decays is presented in this thesis and it is
based on data collected at the Stanford Linear Accelerator Center’s asymmetric B-factory,
which is composed of the PEP-II electron/positron storage ring and the BABAR detector.

This thesis attempts to give a comprehensive picture of BABAR’s analysis of the B°
decays to the KTK~K° final state, through the intermediate resonances ¢K°, foK°,
and the non-resonant K™K~ K" and of the B® decays to KJKYK? final state. Chapter
1 focuses on the theoretical importance of the CP violation in these decays, and how
relate it to Standard Model parameters. Chapter 2 describes the general experimental
approach for a measurement of time-dependent CP asymmetry in B decays. Chapter 3
gives the basis of the Dalitz plot technique used to measure the different contributions to
the CP asymmetry in the K™K~ K° final state. Chapters 4 and 5 present an overview
of the BABAR detector and of the reconstruction of charged and neutral kaons, which
plays a fundamental role in the decays described in this thesis. Chapter 6 and 7 present
the analyses of B — KTK~K° and B® — K2K?K? decays, respectively, discussing
the details of the experimental technique used. Chapter 8 presents a measurement of
branching fraction of B — ¢7 (both charged and neutral), which can be used in estimating
the Standard Model sub-leading amplitudes of B® — ¢K° and also to set limits on
Supersymmetric models. Finally Chapter 9 evaluates the impact of the measurements

presented in this thesis on the knowledge of possible non Standard Model physics.



Chapter 1

C P Violation in B Decays

The actual understanding of the sub-atomic phenomena observed in high energy accelera-
tors and detectors is expressed by the Standard Model (SM) theory of the electromagnetic,
weak, and strong interactions. This theory of fundamental interactions provide an expla-
nation of the origins of the C'P violation, by means of a unique irreducible complex phase
in the CKM matrix of quark flavour mixing.

We will describe how the CP violation can be measured in the neutral B meson
system in the framework of the Standard Model. The validity of this model in the flavour
sector can be tested by over-constraining its parameters both in C'P-violating and in CP-
conserving processes, by means of the analysis of the Unitarity Triangle. Through such
an analysis of a large number of processes, the Standard Model seems to be the leading
rule for the flavour of fundamental particles.

However, problems arise when the Standard Model is extended to the Planck scale.
One of the fundamental elements of this theory, the Higgs boson, receives sizable quantum
corrections from virtual particles which pull its renormalized mass to the Planck scale,
unless a fine tuned cancellation of these corrections is invoked. To avoid this undesir-
able fine tuning, extensions of the Standard Model has been proposed, one of the most
convincing being the Supersymmetry. These theories beyond the Standard Model could
provide new sources of CP violation in addition to the CKM one.

These New Physics theories should reproduce the flavour structure with the measured
amount of CP violation in the processes which to a good approximation are governed by
the Standard Model only, and can produce sizable effects in less constrained processes.
One of the most promising fields in the B decays to exploit such indirect effects of a

physics beyond the Standard Model is the measurement of CP violation in b — s loop
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processes.
We will focus on the specifics of the CP violation in BY decays to three kaons, and we

will interpret the results in the Standard Model framework and possible extensions of it.

1.1 Discrete Symmetries

The discrete space-time operations of parity (P : x — —x) and time-reversal (T': t —
—t) have classical interpretations. Testing the parity conservation of a classical theory
corresponds to validating the invariance of its laws of motion under a mirror reflection
about a coordinate plane followed by 7 rotation about the axes perpendicular to that
plane. Similarly, time-reversal symmetry of a classical theory indicates no time direc-
tion preference. These operations were recognized long before the advent of quantum
mechanics and quantum field theory as symmetries of classical theories of gravity and
electromagnetism. Charge-conjugation (C') operation, however, was first brought to light
by relativistic quantum theory prediction of anti-particles. This operation, which corre-
sponds to reversing all quantum numbers of a particle while keeping the mass unchanged,
has no classical analogue.

Experiment by Wu et al. [1] demonstrated parity violation in 3 decay of °Co, and
the one by Goldhaber et al. [2] discovered C' violation observing that neutrinos emitted
in electron capture by *" Fu were left-handed.

While €' and P are maximally violated in weak interactions, there is no evidence
that they are also violated in strong and electromagnetic interactions. In all the inter-
actions, CP is conserved to a good approximation, and it was supposed to be an exact
symmetry until CP violation was firstly observed by Christenson et al. [3] in 1964 with
the discovery of the decay K — mw. CP violation was then suggested as one of the
indispensable ingredients of any mechanism leading to matter/anti-matter asymmetry in
our universe [4].

In the next few decades, the SM, which encapsulates the Cabibbo-Kobayashi-Maskawa [5]
mechanism of CPV through flavor-changing charge currents between three generations of
quarks, became established as the fundamental theory of particles and interactions. There
was no indication of CPV outside the kaon system until recently (2001), when the B fac-
tories met their first major milestone and observed the phenomena in B meson decays to

CP eigenstates containing charmonium, B® — [c] K° [6, 7].
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1.2 CP Violation in Standard Model

The Standard Model of particle physics [8] is based on three fundamental properties:

1. three families of particles, each consisting of two quarks and two leptons, are the

()0
()(2)()

2. the interactions of these particles are the expression of three local gauge symmetries

of nature: SU(3)c ®SU(2), ®@U(1)y, where SU(3)¢ is the symmetry related to the

building blocks for all matter:

quantum number of strong interaction (Color), SU(2), is the weak isospin symmetry

and U(1) is hypercharge Y symmetry;

3. interactions with a heavy scalar with a non-zero vacuum expectation value produces

mass on all of the particles and breaks the electro-weak gauge symmetry.

1.2.1 The CKM Picture of CP Violation

In the Standard Model (SM) [8] of SU(3)c ® SU(2), @ U(1)y gauge symmetry with three
fermion generations, CP violation arises from a single phase in the mixing matrix for

quarks [5]. Each quark generation consists of three multiplets:

UI
Qi = ( D% ) = (3,2)+1/6, Ué = (37 1)+2/37 dé = (37 ]‘)_1/37 (13)

where (3,2)41/6 denotes a triplet of SU(3)¢, doublet of SU(2); with hypercharge ¥ =
Q — T3 = +1/6, and similarly for the other representations. The interactions of quarks
with the SU(2), gauge bosons are given by

1 —

L = —59QLA" 715 Q1, W, (L4)
where 7 operates in Lorentz space, 7 operates in SU(2),, space and 1 is the unit matrix
operating in generation (flavor) space. This unit matrix is written explicitly to make
the transformation to mass eigenbasis clearer. The interactions of quarks with the single

Higgs scalar doublet ¢(1,2)11/, of the Standard Model are given by

Ly = —Gij—iigbdéj — Fz-j—iigz;uéj + hermitian conjugate, (1.5)
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where G and F' are general compler 3 x 3 matrices. Their complex nature is the source
of CP violation in the Standard Model. With the spontaneous symmetry breaking,
SU22), @ U(l)y — U(1l)gm due to (¢) # 0, the two components of the quark dou-
blet become distinguishable, as are the three members of the W*# triplet. The charged

current interaction in (1.4) is given by
1 I .0 1 +
Ly = — S9ULY 1;;dy; W, +he. (1.6)

The mass terms that arise from the replacement $(¢°) — \/g (v+ H%) in (1.5) are given
by

1 — 1 —
Ly = —\/;vGijdiidéj — \/;UFijuiiuéj + hermitian conjugate, (1.7)

namely

My =Gv/vV2, M, = Fv/V2. (1.8)

The phase information is now contained in these mass matrices. To transform to the mass

eigenbasis, one defines four unitary matrices such that
VarMaVip = My™, Vit MJV, = M, (1.9)

where M;iag are diagonal and real, while V;, and V,x are complex. The charged current

interactions (1.6) are given in the mass eigenbasis by

1 _
Ly = —\/;gu_u”yuvijdLjWJ + h.c.. (1.10)

(Quark fields with no superscript denote mass eigenbasis.) The matrix V =V, LVdTL is the
(unitary) mixing matrix for three quark generations. As such, it generally depends on
nine parameters: three can be chosen as real angles (like the Cabibbo angle) and six are

phases. However, one may reduce the number of phases in V by a transformation

V = V=PVP;, (1.11)
where P, and P, are diagonal phase matrices. This is a legitimate transformation because
it amounts to redefining the phases of the quark-mass-eigenstate fields, as was discussed

earlier:

qri — (Pp)iqri, qri — (Py)idni, (1.12)
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which does not change the real diagonal mass matrix M;“ag. The five phase differences
among the elements of P, and P; can be chosen so that the transformation (1.11) elimi-
nates five of the six independent phases from V; thus V has one irremovable phase. This
phase is called the Kobayashi-Maskawa phase dky, and the mixing matrix is called the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. It is interesting to note that the same
procedure applied to a two-generation Standard Model Lagrangian with a single Higgs
field would remove all CP-violating phases—that theory could not accommodate CP vi-
olation without the addition of extra fields. It was this observation that led Kobayashi
and Maskawa to suggest a third quark generation long before there was any experimental
evidence for it.

The irremovable phase in the CKM matrix allows possible CP violation. To see this,

we write the CP transformation laws on a Dirac spinor:

Yy — i, VA Wa(1 — )05 — oy Wa(l — ¥5)t. (1.13)

Thus the mass terms and gauge interactions are obviously CP-invariant if all the masses
and couplings are all real. In particular, consider the coupling of W* to quarks. It has

the form

g‘/;jﬂi")/uWJru(l — "}/5)dj + g‘/;jg]’}/uwiu(l — ")/5)UZ (114)

The CP operation interchanges the two terms except that V;; and V;} are not interchanged.
Thus, CP is a good symmetry only if there is a mass basis and choice of phase convention
where all couplings and masses are real.

CP is not necessarily violated in the three generation Standard Model. If two quarks
of the same charge had equal masses, one mixing angle and the phase could be removed
from V. This can be written as a condition on quark mass differences: CP violation

requires

(mif —mg)(mg — my)(mi — my) (my — m)(m — mg)(my — mg) # 0. (1.15)

(The squared masses appear here because the sign of a fermion mass term is not physical.)
Likewise, if the value of any of the three mixing angles were 0 or 7/2, then the phase
could be removed. Finally, CP would not be violated if the value of the single phase were
0 or m. These last eight conditions are elegantly incorporated into one, parameterization

independent, condition [9]. To find this condition, note that unitarity of the CKM matrix,
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VVT =1, requires that for any choice of 4, j, k,l = 1,2,3

3
SViVaVir Vil = J Y €ikmeiin- (1.16)

m,n=1

Then, the conditions on the mixing parameters are summarized by
J # 0. (1.17)

The fourteen conditions incorporated in (1.15) and (1.17) can all be written as a single

requirement of the mass matrices in the interaction basis [9]:
S{det[MyM}, M, M}]} #0 < CP violation. (1.18)

This is a convention independent condition. The quantity J is of much interest in the
study of CP violation from the CKM matrix. The maximum value that J could in
principle assume is 1/(6v/3) ~ 0.1, but it is found to be < 4 x 107°, providing a concrete
meaning to the notion that CP violation in the Standard Model is small.

The fact that the three generation Standard Model with a single Higgs multiplet
contains only a single independent C'P-violating phase makes the possible CP-violating
effects in this theory all very closely related. It is this that makes the pattern of CP
violations in B decays strongly constrained in this model. The goal of the B-factory is to

test whether this pattern occurs.

1.2.2 Unitarity of the CKM Matrix

The unitarity of the CKM matrix is manifest using an explicit parameterization. There

are various useful ways to parameterize it, but the standard choice is the following [10]:

—1id

C12C13 $12€13 S513€
_ & 19
V= —5812C23 — C12523513€" C12C23 — S12523513€" 523C13 (1'19)
i5 i5
S12523 — C12C23513€" —C12523 — S12C23513€" C23C13

where ¢;; = cos8;; and s;; = sin6;;. In this parameterization
J = 012023033812823813 sin 9. (120)

This shows explicitly the requirement that all mixing angles are different from 0, 7/2 and

0 #0,m.
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The unitarity of the CKM matrix implies various relations among its elements. A full
list of these relations can be found in [11]. Three of them are very useful for understanding

the Standard Model predictions for CP violation:

VuaVis + VeaVis + ViaVis = 0, (1.21)
VasVap + VesVi + Vis Vi = 0, (1.22)
Vudvqu + ‘/cd c}k) + ‘/td tz = 0. (123)

Each of these three relations requires the sum of three complex quantities to vanish and
so can be geometrically represented in the complex plane as a triangle. These are “the
unitarity triangles”; note that the term “Unitarity Triangle” is reserved for the relation
(1.23) only (for reasons soon to be understood).

Equation (1.16) has striking implications for the unitarity triangles:
1. All unitarity triangles are equal in area.

2. The area of each unitarity triangle equals |.J|/2.

3. The sign of J gives the direction of the complex vectors.

The rescaled Unitarity Triangle (Fig. 1.1) is derived from (1.23) by (a) choosing a
phase convention such that (V.4V};) is real, and (b) dividing the lengths of all sides by
|VeaVisl; (a) aligns one side of the triangle with the real axis, and (b) makes the length of
this side 1. The form of the triangle is unchanged. Two vertices of the rescaled Unitarity
Triangle are thus fixed at (0,0) and (1,0). The coordinates of the remaining vertex are
denoted by (p,n). It is customary to express the CKM-matrix in terms of four Wolfenstein
parameters (A, A, p,n) with A = |V,s| = 0.22 playing the role of an expansion parameter
and 7 representing the CP-violating phase [12]:

1% A AN(p —in)
V = Y _ A; AN2 +O(\Y). (1.24)
AN (1 —p—in) —AN 1

A is small, and for each element in V, the expansion parameter is actually A\2. Hence it
is sufficient to keep only the first few terms in this expansion. The relation between the

parameters of (1.19) and (1.24) is given by

S19 =\, sp3 = AN si3e7 = AN (p —in). (1.25)
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A
A
L |
VudVib o ViaVib
! _Vtd Vtb
IVedVenl | Ve Vel
|
|
|
|
|
o LY | PN,
0 P 1
92 (b) 7204A5

Figure 1.1: The Unitarity Triangle (a) and the rescaled Unitarity Triangle, all sides divided
by VizVea (b)

This specifies the higher order terms in (1.24).
The definition of (A, A4, p,n) given in (1.25) is useful because it allows an elegant

improvement of the accuracy of the original Wolfenstein parameterization. In particular,

defining
Vis =N, Vi = AN Vi = AN (p — i), (1.26)
one can then write
Via = AN (1 —p —in), (1.27)
%‘/cd = _AQ)\5777 %V;fs = _A)‘4777 (128)

where
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turn out to be excellent approximations to the exact expressions [13]. Depicting the

rescaled Unitarity Triangle in the (p, 77) plane, the lengths of the two complex sides are

1—A2/21V, 1|V,

Ro=vETip= 22\ Vel p 1-p2+7 =2 (1.30)

A Vb A Ve

The three angles of the Unitarity Triangle are denoted by «a, # and ~y [14]:
ViaVip } [ Vcdvﬂ
a = arg | — , =arg |— =, 1.31
© [ VudVij, g = ViaVi 30
The third angle is then
ViV

v = arg {—ﬁ] =1—a-—0. (1.32)

These are physical quantities and, as discussed below, can be measured by CP asymmetries
in various B decays. The consistency of the various measurements provide tests of the
Standard model.

The angle (8 gives, to a good approximation, the Standard Model phase between the

neutral B mixing amplitude and its leading decay amplitudes.

1.3 CP Violation Phenomenology

We have described how CP violation is produced in the Standard Model; in the following

we describe how CP violation phenomena can be observed in decays of mesons.

1.3.1 Direct CP Violation

Consider the transition from the states i and 7 to final states f and f with only one

amplitude contributing:

(f|T)i) = Ae'0te),
(fITli) = Ae'®?),

where T is the transition operator and A is a positive real number. The CP-even phase
that is common to both decays, 9, is referred to as a strong phase, and the CP-odd phase
that changes signs, ¢, is referred to as a weak phase. The CP operator relates the CP

conjugate states by inducing arbitrary phases:

CPliy = e"|i) , CPli) = e i)
CP|fy=e™f) , CP|f)=e"][f). (1.33)
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If CP is conserved by T,
(fIT]i) = {fI(CP)YT(CP)'[i) = "™~ (f|TYi)

Choosing 7; —ny = 2¢ — 0, we see that despite the presence of the CP violating phase ¢ in
this transition, the observable amplitudes are incapable of indicating any CP violation in
T. CP violation is observable in transitions with two strong and weak phase contributions.

Counsider

FITT) = Ao 4 ageitisnss)
(fIT)iy = Ay etO=01t0) o A, il02=62+0)

Here the presence of interference between the two amplitudes allows the construction of

the CP violating observable
(AT = (T[] = —4A1 Az sin(d1 — 62) sin(¢1 — ¢a). (1.34)

Note however, that in order to obtain CP violation, at least two differing strong and weak
phases are necessary. Such expression of CP violation is known as direct CP violation.
It is possible to obtain CP violating observables without strong phases when considering
decays to two different final states, or when ¢ and ¢ decay to the same final state f = f.

We will consider this latter case in the discussions that follow.

1.3.2 Neutral B Mesons

In the absence of the weak interaction, a P° meson such as K°, D° or B° would be
stable and have a common mass with P° . Weak transitions, however, permit P° « P°
mixing, forming mass/lifetime eigenstates which are a mixture of the flavor eigenstates.
Under the Wigner-Weisskopf approximation [15], the Schroedinger equation for the time

evolution and decay of the meson system:

[9(8)) = ¢n (0| P°) + o (1) P°)

may be written in the |P%)/|P°) basis as

z%(z;):H(z;):(M—%r)(z;). (1.35)
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where M and I' are 2x2 Hermitian matrices. C'PT invariance guarantees Hi; = Hos.

The light P;, and heavy Py mass eigenstates are given by
|Pr) = plP%) +alP°),
|Pr) = plP°) —q|P). (1.36)
The complex coefficients p and ¢ obey the normalization condition
lg|* + |p|* = 1. (1.37)

Note that arg(q/p*) is just an overall common phase for |Pr) and | Py) and has no physical
significance.
The mass difference Amp and width difference AT'p between the neutral P° mesons

are defined as follows:
AmPE MH—ML, APPE PH—PL, (138)

so that Amp is positive by definition. Finding the eigenvalues of Eq. 1.35, one gets

1 1
(Amp)? = $(ATp)* = 4(| Mol — 1IT1al?), (1.39)
AmPAFp = 4§R(M12F>{2) (140)

The ratio ¢/p is given by

P 2(M12 — %Flg) Amp — %AFP7
Using
CP\PO> = e”’]?o),
CP|P%) = e |PY),
we find that CP is conserved when
L 'E‘ ~ 1 (1.42)
q q

As expected, this condition shows that CP invariance implies that |Pp) and |Pg) are
CP eigenstates. Failure of this condition indicates CPviolation in mixing or indirect CP

violation.
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1.3.3 CP Violating Observables

Consider the decay of the P°/P° meson to final states f/f:

Ap=(fITIPY) . Ap=(fITIPY),
Ap=(fITIP%) , Ap=(f|T|P"),

Applying 1.33 and 1.42 to these amplitudes leads to the C'P-invariance conditions:

Af = =D A = | Af| = | A, (1.43)
Af =t AL = | Af = | Af). (1.44)

As expected, the decay probabilities for P° to f and P° to f must be the same to conserve
CP. Deviation from these conditions signifies CP wviolation in decay. We may construct
a more concise CP conservation requirement by combining the individual conditions for

mixing and decay. Taking the ratio of the conditions 1.43 and 1.44 we find

ArA5 . 2
Uy in € (1.45)
ApAg p
Defining B -
_ g4y _qAf
AM=E2— A= ——, 1.46
f pAf f pAf ( )
allows Eq. 1.45 to be written more simply as
1
= — 1.47
v (1.47

This condition encapsulates another possible expression of CP violation. In order to
illustrate, let us consider the simplified case when P° and P° decay to a CP eigenstate

(i.e. CP|f) =nseplf), npop = £1), and there is no CP violation in mixing or decay:

Af = A@i(é—’—d)D), Af = nfCPAei(é_(bD) = |Af‘ = |/_1f|, (148)

q/p = oM — lg/p| = 1. (1.49)

we have introduced a strong phase but we have used different mixing and decay weak
phases ¢y and ¢p . In this case, Ay = nfCPeQi(¢”f*¢D). However, since f = f, Ar = Ay,
and Eq. 1.47 becomes

A =41 =y, ¥ @n=90) (1.50)
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and a less apparent expression of CP violation is revealed: CP wiolation in interference
between mizing and decay. In the case of meson decays to CP eigenstates, A # +1 for
any of the three types of CP violation: CP violation in mixing, |q¢/p| # 1; CP violation
in decay, |A;/A;| # 1; and CP violation in interference between mixing and decay, non-
vanishing relative phase between ¢/p and A 7/Ay. In the next section we will see how A;
appears in the time-evolution of neutral mesons, specifically focusing on the B°. We will

also see how Ay is directly related to CKM parameters for specific B decays.

1.4 Time Evolution of Neutral B; Mesons

BABAR at PEP-II is a B-factory, i.e. an experiment where a large number of B mesons pairs
are produced through the process ete™ — 1'(4S) — BB. To a very good approximation
half of these pairs are the neutral B°/B° [23]. Studies of the decay of these mesons to
CP eigenstates provides a mean of measuring angles of the unitarity triangle.

After production, a solitary B® (or B°) will evolve according to the Schroedinger
equation 1.35. Before decaying, the meson may change its flavor several times through

the box diagrams in Fig. 1.2. The time-dependent mass eigenstates

b w d
B’ t] At B’
- i v
d w b
b t d
— : & . —
[ |
[ |
=2 al | (/]
B’ L W 5
[ [
| |
< ! —< ! <
d t :

Figure 1.2: The leading diagrams contributing to B® — B® mixing.
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|BL(t)) = e ™ TH2|B)
By (t)) = e ™iteTnt/2|By)

are related to flavour eigenstates through Eq. 1.36. Therefore

|Bo(t)> — (6—(imH+FH/2)t + 6_(imL+FL/2)t) |BO> +
q (e—(imH+FH/2)t _ e—(z’mLJrFL/?)t) ’§0>’ (1.51)
b
|EO(t)> — ]% (6—(imH+FH/2)t — 6_(imL+FL/2)t) |BO> +

(e~ timu+Tu/2)t | o~(ime+Tu/Dt) | 5O}, (1.52)

7(4S5) [55] decay, however, produces two neutral B mesons in a coherent anti-symmetric
state. This two meson system will consist of one B of each flavor until one particle decays.
From that time on, the remaining B will obey Eq. 1.51 until its decay. If one meson decays
to a CP eigenstate, there is no means of identifying its flavor. We will refer to this meson
as Bop with decay time top . However, since at time of the first decay only one meson
of each flavor was present, the flavor of Bop may be inferred from the other meson. We
will refer to this meson as B,y with decay time t,, . Identifying At = tcp — t1y = 0 as
t =0 in Eq. 1.51, the probabilities of the two observable anti-symmetric states (i.e. when

Biag 1s a B? or BY) are

Ppo(At) = %!(f!T\BO(t = tcp))(B(t = tag)|B"(t = tiag)) —
(fITIB(t = tcp)) (B (t = thag)|B"(t = tiag)) |’

At
(& T

4T
i (80) = S1UITIB(E = 1)) (Bt = 1 | Bt = o)) —
ITIB(E = tor)) (Bt = tuag)| Bt = tg )

_ 1Ay
_ ¢ 4; (1 — Sysin(AmgAt) + C cos(AmgAt)), (1.54)

(1 + Spsin(AmgAt) — Cy cos(AmgAt)), (1.53)

where Amy, is the mass difference between B; and By and the lifetime difference is

assumed to be negligible. Here

23

Sy = —2 1.55

S ENPVE (1.55)
1 — A2

¢ = ML (1.56)

L4 [Ap 2
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where

p Ay
Ap = - 1.57
f UCPqu (1.57)

and A = |[(f|T|B%|, A = |(f|T|B°)], and ncp is the CP eigenvalue of the final state.

1.4.1 Relating CP Violation to CKM Matrix

In general, the SM amplitudes for B decays may carry contributions from multiple Feyn-
man diagrams, each carrying different CKM matrix elements. Therefore the amplitude
ratio in Ay is of the form:

Age' + A?eiﬁ + Aje + ..

A
A Mpnr Ay e (159
Ay Afe~io 4 Afe_lﬁ + A}e‘” + ...

If all of the amplitudes contributing to A and A could be calculated for a given decay, A f
relation to CKM matrix elements and unitary triangle angles would be easy to identify.
Unfortunately calculating amplitudes for hadronic B decays is rather complex. Though
the short distance processes governed by the weak interaction and hard QCD can be
cleanly calculated, long distance processes like hadronization and rescattering are difficult.
Decays dominated by one phase require no hadronic calculation. As an example, consider

the leading diagrams for the decay B — J/i) K° presented in Fig. 1.3. To highest order

S

Figure 1.3: The leading diagrams contributing to B — Ji) K° decays. Left: “tree”
diagram; right: “penguin” diagram.

in the Wolfenstein parameter A, the so-called “tree” level diagram containing the factors

ViV ~ A% and the leading loop diagram, known as “penguin” diagram, containing the
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factor Vi Vi &~ A2 + O(A1)e™ carry the same CKM phase [16]. Therefore

\ ViV Va Vi VeV
T Vi VsV Vea Ve

= %)\J/wKO = sin Qﬂ, (159)

where the first term is ¢/p (from diagrams in Fig. 1.3), the last term comes from K° — K°
mixing, and the middle term is A/A. Since A g ko 18 so cleanly related to the angle 3,
this decay of the B meson is often referred to as “the gold-plated mode”.

1.4.2 CP Violation in Two-body B? — ¢K° in Standard Model

Due to the absence of the Flavour Changing Neutral Currents (FCNC) at tree level in
the Standard Model, the decay B — ¢K° proceeds entirely through b — s gluonic
penguin diagrams (Fig. 1.4). Consequently, they are Cabibbo suppressed with respect to
B — Jh K.

Figure 1.4: Examples of quark level diagrams for B — ¢K and B — ¢m. (a) Internal
penguin diagram; (b) flavor singlet penguin diagram.

The interest in these decays stays in the fact that, while in the tree diagrams only
real particles can enter, in the loop of a penguin amplitude all the virtual particles which
can couple to b and s quarks may enter. In the Standard Model, this happens through
weak interactions with quark u, ¢ and ¢t. In extensions of such a model other particles
can couple with them, these contributions entering the amplitude at the leading order.
We will discuss these effects beyond Standard Model in Chapter 9.

In the Standard Model, assuming ¢ = (s5), the decay amplitude is given by:

A(BY — ¢K°) = V. Vi(P. — P) + Vi Vi (Pu — Py (1.60)
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where P; with ¢ = u, c,t denotes penguin diagram contributions with internal u, ¢ and ¢

quarks. With

VusVi P,— P
=1 <0.02 =0(1 1.61
‘/CS‘/C}; f— Y pc _ Pt ( ) ( )

also in this decay a single CKM phase dominates and as the decay phase ¢p and the

mixing phase ¢, are the same as in B® — J/i) K° we find
O(Z)Ks == 0, S¢>KS == SwKS = sin 25 . (1.62)

The equality of these two asymmetries need not be perfect as the ¢ meson is not entirely
a s§ state and the approximation of neglecting the second amplitude in (1.60) could be
only true within a few percent. However, a detailed analysis shows [17] that these two
asymmetries should be very close to each other within the SM: [Syxo0 — Sj/yxo| < 0.04 .
Any strong violation of this bound would be a signal for new physics.
In view of this prediction, the first results on this asymmetry from BABAR [18] and
Belle [19] were truly exciting:
(5in28)yrc, = { —8.;2 i 8'241; (stat) & 0.09 (syst) (BaBar)
—0. .64 (stat) £ 0.18 (syst) (Belle),
implying
Ser, = —0.39 £ 0.41, Cor, = 0.56 £ 0.43, (1.63)

|Ssrcs — Syjprcs| = 1.12 4 0.41 (1.64)

and the violation of the bound |Syxs — S J/¢KS| < 0.04 by 2.70. These results invited a
number of theorists to speculate what kind of new physics could be responsible for this
difference. Some references are given in [20]. Enhanced QCD penguins, enhanced Z° pen-
guins, rather involved supersymmetric scenarios have been suggested as possible origins
of the departure from the SM prediction. Unfortunately the new data presented at the

2004 summer conferences by both collaborations look much closer to the SM predictions

(sin 28) o, — 0.50 £ 0.25 (stat) £ 0.06 (syst) (BaBar)
?Ks =1 0.06 4 0.33 (stat) = 0.09 (syst) (Belle),

implying
Sex, = 0.34 £ 0.20, Cor, = —0.04 £0.17. (1.65)

As can be seen, the fact that this is a rare decay implies that the statistical uncertainty

is very large. For these reasons the interest moves to the decays of the B meson in three
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body final states, which usually have a larger branching fraction with respect two-body
B decays.

In particular, we will concentrate on the decays of the B into three kaons: BY —
KTK~K"and B® — K2K?K?. The first one includes the mentioned B — ¢K?, because
the ¢ meson decays instantaneously in a pair K+ K~ inside the detector. It will be studied
with a completely new approach with respect to the past: a Dalitz plot technique of the
whole three kaon phase-space.

The second one has become feasible thanks an experimental technique of the decay

vertex reconstruction only recently developed.

1.5 CP Eigenvalues for K K K Final States

In the case of three-body B decays, the CP eigenstate cannot be always determined.
There are two main scenarios in which this is feasible, thus allowing a clean interpretation

of measured CP violation parameters:
1. B— QQP, where Q = (K*,7%) and P = (7%, K%, K?);
2. B— PPX, where P, X = (7, K2, K?).

In this work, we will consider B® — KTK~K° for the Type 1 decays and on B’ —
K?K2K? for the Type 2 decays.
Let us consider as example of Type 1 B — KT K~ K decays. We can write the final

state as
|K* (1) K™ (p2) K (p3)) (1.66)

where p1, p» and p3 are the momenta of the three kaons. In the rest frame of the KT K~
mesons pair, p; = p = —ps. The final state can be characterized by means of the angular
momentum between the Kt and the K~ (/) and the angular momentum of the K™K~

system and the K? (I'). The conservation of angular momentum in the decay implies
JBOZZGBZI@SKJr@SK*@SKO (167)

and, since the B, K™ K~ and K° are pseudoscalar mesons (J” = 07), the intrinsic

angular momentum is zero, then the Eq. 1.67 becomes simply

0=1lal. (1.68)
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Therefore, the angular momentum between the K™K~ system and K° (I') must be equal

to [. Applying the parity operation P to the final state
P|IK*(p)K™ (—=p)KJ(0) = =1 K™ () K~ (=p) (1)) (1.69)

because the intrinsic parity of a pseudoscalar meson is-1. Applying the charge conjugation

C

CIK*(p) K~ (—p)K2(p')) = ne(K2)| K~ (p)K* (—p)K2(p')) =
Ne(KQ)(—1)'|K (p) K~ (—=p)K3(p')) = (=) [KF (p) K~ (—p) K2(1)) (1.70)

where 7.(K?) is the C' eigenvalue of the K?.
Finally applying the combination of C' and P on the final state

CPIKT ()K= (=p)KS(0) = (=1)'|K* (0) K~ (—p) KS(p)) (1.71)

then this is a CP eigenstate which has an eigenvalue which depends on the relative angular
momentum between the K and K ~. This makes necessary a complete angular analysis
to interpret the CP violation parameters in terms of CKM parameters (5 and direct CP
violation). We will achieve this purpose through a full Dalitz plot analysis performed
simultaneously to the CP violation measurement.

A more fortunate case is the one of Type 2 decays. We will consider the case of
B — KJK?K? which we will measure in Chapter 7. In this case in fact the final state

we consider is
|K9(p) KJ(—p) K2 (p)) (1.72)

where the K0 are spin zero mesons, then they follow the Bose-FEinstein statistics, thus the
K?K? wave-function must be symmetric, and hence the angular momentum [ between

the two K must be even. This implies that Eq. 1.71 in this case reads:
CP|K(p)K(—p)KJW)) = +IK(p) K(—p) K3(0)). (1.73)

Then K2K?K? is a CP eigenstate with a definite eigenvalue (CP even). In this case, an
angular analysis is not needed, and the measurement can be performed like in the case of
two body decays (as in B® — J/ip K?). However, measurement of CP violation for such

decays is challenging for experimental reasons which will be explained in Sec. 2.3.
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1.6 Formalism for Charmless Three-body B Decays

A complete understanding of B physics requires the evaluation of the matrix elements
of the amplitude. In the case of charmless B decays, the quarks in the final states are
light, so the calculation techniques using the Heavy Quark Expansion Theory (HQET) [24]
cannot be used. In this case a more appropriate approach to estimate decay amplitudes is
QCD factorization, even if it is really a good approximation in the limit of m;, — oo. Said
this, the factorization approach results a suitable approximation in the case of charmless
three-body B decays, even with the caveat that some non factorizable effect due to the
validity of the limit can make possible deviations from its prediction.

In this approach, the matrix element of the B — KKK decay amplitude is given by

(RRK|He|B) = % S \EEKT,B), (1.74)

p=u,c

where \, = V)V and [25]

T, = a10pu(ub)y_a ® (Su)y_a + a20p,(5b)v_a ® (au)v_a + az(5h)y_a & Z(Q_Q)V—A
q

+aly Z(q_b)V—A ® (5q)y—a + as5(5b)y_a @ Z(Q_Q)V—f—A

q q

3
—2ag Z(q_b)S—P ® (59)s+p + a7(5b)y—a ® Z §€q((?€I)v+A
q

q

3 3
_2a1§ ;@b)s—P ® Eeq(EQ)S+P + ag(gb)V—A X g Eeq(Q_Q)V—A

Faly Y (@@ Seg(5a)va, (1.75)
q

with (§¢)vea = qvu(1 £75)d, (@¢)sxp = G(1 £ v5)¢" and a summation over ¢ = u,d, s
being implied. The factorization approach consists in the fact that the matrix element
(K KK|j ® j'|B) corresponds to (K K|j|B)(K|j'|0) (i.e. the product of the transition of
B — KK and the -independent- creation of a K by the vacuum), (K|j|B)(KK|j'|0) (i.e.
the product of the transition of B — K and the creation of the K K by the vacuum) or
(05| B)(K KK|j'|0) (i.e. the creation of K K K by the vacuum), as appropriate, and a; are
the next-to-leading order effective Wilson coefficients. The Wilson coefficients depends on
the renormalization scale p and are calculable perturbatively (while the non-perturbative

effects are inside the operators). The normalization scale used is u = my,/2 = 2.1 GeV/c?.



1.6 Formalism for Charmless Three-body B Decays 23

1.6.1 B° —- KTK-K° Decay Amplitude

Applying Egs. (1.74), (1.75) and the equation of motion, one can evaluate the B® —
K*K~K° decay amplitude [26].

In the factorization terms, the KK pair can be produced through a transition from
the B meson or can be created from vacuum through V and S operators. There exist
two weak annihilation contributions, where the B meson is annihilated and a final state
with three kaons is created. The Okubo-Zweig-lizuka rule suppressed matrix element
(K*K~|(dd)y_4|0) is included in the factorization amplitude since it could be enhanced
through the long-distance pole contributions via the intermediate vector mesons.

To evaluate the amplitude, one needs to consider the B — KK, 0 — KK and
0 — K KK matrix elements, the so-called two-meson transition, two-meson and three-
meson creation matrix elements in addition to the usual one-meson transition and creation

ones.

Two-kaon Transition

The two-kaon transition matrix element (KCK™T|(ub)y_4|B°) has the general expres-

sion [27]
(K (p)) K*(po)|(@b)v-a|B°) = ir(pp —p1 — p2)u + iws(p2 + p1)y +iw-(p2 — p1)a
+h €uvasPs (P2 + 1) (02 — p1)”. (1.76)
where r, w4 and h are form factors which can receive both resonant and non-resonant

contributions, which can be evaluated using the Heavy Meson Chiral Perturbation Theory

(HMChPT) [27]. This leads to

(K™ (p3)|(5u)y—al0) (K" (p1) K" (p2)| (@b)v—a| B)
= —J%K [2m3r 4 (m% — 515 — m3)wy + (s23 — s13 — my + mw_|,  (1.77)

where s;; = (p; + p;)?, and f;, is the kaon decay constant.

Three-kaon Creation

The matrix elements involving 3-kaon creation are given by [2§]

(R (p1) K+ (p2) K~ (ps) | (5d)v—a]0) (0] (db)y— 4| B°) ~ 0, (1.78)
(R (1)K (ps) K~ (ps)|575]0) (0| dysb | BY) = % (1 Sl m3) FRRE(m2),

2 2
T mp — Mk
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where

2

n (1.79)

)
mu+ms ms — My

2 2
mK+ :mK_m

v =

characterizes the quark-order parameter (Gg) which spontaneously breaks the chiral sym-
metry. Both relations in Eq. (1.78) are originally derived in the chiral limit [28] and hence
the quark masses appearing in Eq. (1.79) are referred to the scale ~ 1 GeV . The first
relation reflects helicity suppression which is expected to be even more effective for ener-

FKKK

getic kaons. For the second relation, the form factor is introduced to extrapolate

the chiral result to the physical region.

Two-kaon Creation

We now turn to the 2-kaon creation matrix element which can be expressed in terms of

time-like kaon current form factors as

(K* (pr) K™ (pxc)|@720l0) = (pc+ — o)l 57
_0 _ =
(K (pro) K (po)lqual0) = (pxo — pro) By <. (1.80)
The weak vector form factors FqKJrK ~ and FQKOKO can be related to the kaon electro-

magnetic (e.m.) form factors FXX" and FE'X° for the charged and neutral kaons, re-
spectively. Phenomenologically, the e.m. form factors receive resonant and non-resonant

contributions and can be expressed by
FE'K" = F,+ F,+ Fy+ Fyr, FX® =—F,+F,+Fy+ Fyp. (1.81)

It follows from Eqs. (1.80) and (1.81) that

_ - 1
FJﬁK = FdKOKO :Fp+3Fw+§(3FNR_FJIVR>7
FE'E™ = pKR® — _p 4 3F
- u - P ws
_ - 1
FSK+K _ FSKOKO — 3F, - §(3FNR +2F ), (1.82)

where use of isospin symmetry has been made.
The form factors F,, s in Egs. (1.81) and (1.82) include the contributions from the
vector mesons p(770), p(1450), p(1700), w(782), w(1420), w(1650), ¢(1020) and ¢(1680).
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Two-kaon Scalar Contribution

We also need to specify the 2-body matrix element (K * K ~|55|0) induced from the scalar

density. It receives resonant and non-resonant contributions:

P imKK
KJF K- 350 — KtK— _ mzfzg NR
(K*(p) K™ (ps)[5s]0) = FE' (53) ;mg_m_mﬁfs ,
-1
JRE— %(BFNR—FQF]’VR)jLUS% {ln (%)] , (1.83)
23

where the scalar decay constant f; is defined in (i|3s|0) = m;f;, g% is the i — KK
strong coupling, and the non-resonant terms are related to those in FSK+K ~ through
the equation of motion. The main scalar meson pole contributions are those that have
dominant s5 content and large coupling to KK. It is found in [29] that among the fg
mesons, only fo(980) and f5(1530) have the largest couplings with the KK pair. Note
that fo(1530) is a very broad state with the width of order 1 GeV/c? [29].

Amplitude for B - KtK-K°

Collecting all the relevant matrix elements evaluated above, we are ready to compute
the amplitude A(B® — Kgp)K*K~) = +A(B® — K°KTK~)/v2. Since under CP-
conjugation we have Ks(5i) — Ks(—p1), K*(7) — K~ (=p) and K~ () — K* (),
the B — KgK* K~ amplitude can be decomposed into CP-odd and CP-even components

A[B® — Ks(p1) KT (p2) K~ (p3)] = A(s12, 813, 523) = Acp_ + Acpy,
1
Acps = 5[14(812, S13, S23) £ A(S13, S12, S23)]. (1.84)

Correspondingly, we have

I' = Tepy +Teop,

1 1

11
T =
CP+t (271')3

m/‘ACPiPdSleSlS: Wm/‘Acpi’2d812d523.(1.85)

The vanishing cross terms due to the interference between C'P-odd and CP-even compo-
nents can be easily seen from the (anti)symmetric properties of the amplitude and the
integration variables under the interchange of s15 <+ s13. Similar relations hold for the

conjugated B° decay rate I'. The C'P-even fraction f, is defined by

r r
f, = —Cp+tocPy (1.86)
r + r ¢Kg excluded.
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Note that results for the K™K~ K, mode are identical to the K™K~ Kg ones with the CP
eigenstates interchanged. For example, results for (K+* K~ K| )cpy are the same as those

for (K"K~ Kg)cop- and hence f, in KTK~ Kg corresponds to f_ in KTK~ K.

1.6.2 B’ — K!K?K? Decay Amplitude

In an analogous way, the decay amplitudes of B9 — KYKY9KY decays can be evaluated:

. 1) %/2 . . .
A Kslp)KsoRsaloa] = (5) { A = KR ) K
+A[B® — K°(p2) K°(p3)K° (p1)]

+A[B® — Ko(pg)FO(pl)FO(pg)]}, (1.87)

with

‘ Q

7

p=u,c

AB® = K'(p)K°(0)K(ps)] = —% > A {[ (K (p1) K° (p2)| (db)y—a| B") (K (ps)| (5d) v—a|0)

+ (pl)FO(ps)\(Jb)va\ﬁ(])<F°(p2)\(§d)va\0>]

X

®(p2)|5b|B®) (K°(p1) K°(p3)|55]0)

I (pg) 50 B°) (K (p1 ) (p2)5510) | (~20F + af)
KO (p1) K (p2) K (ps) [575010) (0] b  B) (—205 + )
(R (p2)(5b)v -l B) (K (01 K ()] (5)v—l0)

(K" (p )\(Eb)vaIE())<K0(p1)Fo(pz)!(ES)HI(J)}

+

K
( + ;am (ag — %a’é)r»
(K

+

(K
(

+ o+

1
X la3+ai+a5—§(a7+a9+a10)} }, (188)

where the last term will not contribute to the purely CP-even decay B — KgKsKsg.
Decay rates for the KgKsKg and KgKgK modes can be obtained from Eq. (1.85) with

an additional factor of 1/3! and 1/2!, respectively, for identical particles in the final state.
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1.6.3 CP Asymmetries

We now consider the CP asymmetries for B — KtK~K sy, KsKsKgry decays. The
direct CP asymmetry and the mixing induced CP violation are defined by
r-T
T
J 1A ds12dses — f\APdslgdng
f\A|2d312d323+f|/_1\2d312d323’
2fIm(e*QiﬁAcpiA*CPi)d512d323
f |Acps|?dsiadsas +f |A0Pi‘2d512d323’
2flm(6_2iﬁAA*)d312d523
[ |Al2ds12dsos + [ |A2dsiadsas
= fy+Skrrcp+ + (1= f1) Skxk.cp-, (1.89)

AKKK -

SKkKK.cP+ =

SKKK -

where A is the decay amplitude of B® — KTK~Kg(1) or KgKgKg(). For the KT K~ Ky
mode, it is understood that the contribution from ¢Kg is excluded. It is expected in
the SM that Sk cpy = sin208es ~ sin23, Skxk,cp— =~ —sin2f and hence Skrx ~
—(2fy —1)sin2p.!

The numerical expectation values for the CP asymmetries are shown in Table 1.1 [26].

Final State sin 2 Bq
(K"K Ks)gks excuded 074970015 0'011-0'015
(K*K~Ks)cp+ 077070 651 0099 0013
(KYK~KL)gr, excludea  0.74970 080002140002
KsKsKg 0.74870 0007 0:000- 0004
KsKsKy 0.748%5.001 0000 0,018

Ar(%)
(KTK~Kg) ks excluded 0.1670 5, 03 00
(K*K~Kg)copy —0.09% 000022 001
(K+K—KL>¢KL excluded 016t8?§)t8§gi88§
KsKsKg 0747006 001000
KsKsK, 0.77 858 0 007

Table 1.1: Mixing-induced and direct CP asymmetries sin 2. (top) and Af (in %, bot-
tom), respectively, in B — KTK~Kg and KsKgKg decays. Results for (K™K~ K1 )cp+
are identical to those for (KK~ Kg)cps.

The K+ K~ mass spectra of the B — KTK~Kg decay from C'P-even and C'P-odd

contributions are shown in Fig. 1.5. In the spectra, there are peaks at the threshold and a

'Writing the CP-conjugated decay amplitude as A = Acp, + Acp_, we have Acpy = +Acpy with
Ap — A;. This leads to Skxk,cP— = —SKKK,CP+-



28 CP Violation in B Decays

(a) (b)

~ 14 =5
= (@
32 0 200
\4
\sglo “ﬁo 100
= 8 o3 0
. 1 1.02 1.04
v 6 M2
% 9
£
~ 2 ~
Q'g 0 /\ %0 /\
1 1.5 2 2.5 3 3.5 4 4.5 1 1.52 2.53 3.54 4.5
Mg+ g~ (GeV) Mg+ k- (GeV)

Figure 1.5: The KK~ mass spectra for B — KT K~Kg decay from (a) CP-even and (b)
CP-odd contributions. The insert in (b) is for the ¢ region. Results for (Kt K~ K )cp+ are
identical to those for (KT K~ Kg)cps.

milder one in the large mg+x- region. For the C' P-even part, the threshold enhancement
arises from the f,(980)Ks and the non-resonant contributions, while the peak at large
Mi+r— comes from the non-resonant two-meson transition B° — K+ Kg followed by a
current produced K—. For the C'P-odd spectrum the bump at the large mg+- end
originates from the same two-meson transition term, while the peak on the lower end
corresponds to the ¢ K, contribution, which is also shown in the insert. The full K™K~ Kg
spectrum is basically the sum of the C'P-even and the C'P-odd parts.

The deviation of the mixing-induced CP asymmetry in B — Kt K~ Kg and KgKsKg
from that measured in B — J/9 Kg (or the fitted CKM’s sin 23 [30]), namely, A sin 25,4 =

Sin 2f0er — sin 254k (K M), 1s calculated from Table 1.1 to be

Asin 20k rsrs = 0.067500 (0.027000). (1.91)

Asin2Bg+x-ks = 0.067005 (0.027005), (1.90)

Note that part of the deviation comes from that between the measured sin 23,k and the
fitted CKM’s sin 23. The K*K~ Kg has a potentially sizable Asin203, as this penguin-
dominated mode is subject to a tree pollution due to the presence of color-allowed tree
contributions. For the Kg¢KgqKgs mode, the central value and the error on Asin23 are
small.

It is also useful to exploit the dependence of sin 23, on the KK~ invariant mass,
Mi+Kk- = Moy = +/S23. For the phase space integration in Eq. (1.89), for a given s,3,

the upper and lower bounds of s15 are fixed. The invariant mass ms3 is integrated from
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Figure 1.6: Mixing-induced CP asymmetry sin 23.g(mj%% ) (see the text for the definition)

versus the invariant mass m'23%,._ for K* K~ Kg with ¢Kg excluded (solid line) and for CP-even
K*TK~ Kg (dashed line). When m i approaches the upper limit mp —mg,, the whole phase
space is saturated and sin 2feg (M35 ) is reduced to the usual sin 23.¢. This result also applies
to the K™K~ K mode.

Mys = Mo + Mg to mjg = mp — my. When the variable so3 or mos is integrated from
Moy to a fixed m5™ (of course, moy; < miy™ < md;), the effective sin 23 thus obtained is
designated as sin 20ex(m5y™). Fig. 1.6 shows the plot of sin 2Feg(mp, ) versus mps.
for K™K~ Kg. Since there are two different methods for the determination of sin 23.¢, the
results are depicted in two different curves. It is interesting that sin 28(m3¥>) is slightly
below sin 23ck s at the bulk of the mg+ - region and gradually increases and becomes
slightly larger than sin 28¢k 3, when the phase space is getting saturated. The deviation
Asin 20+ k- i, arises mainly from the large my+ - region.

Direct CP violation is found to be very small in both KT K~ Kg and Kg¢KqKg modes.
It is interesting to notice that direct CP asymmetry in the CP-even KtK~ Kg mode is
only of order 1073, but it becomes 0.2 x 1072 in K*K~Kg with ¢Kg excluded. Since

these direct CP asymmetries are so small they can be used as approximate null tests of
the SM.
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Chapter 2

Time Dependent CP Asymmetry for
Neutral B Decays

The CP violation in BB system can be measured determining the asymmetry in the

number of decays of the B® and B® mesons in the final state f and its CP conjugate f:

(B =T =)
AP =T B = B = ) 2y

Once the B candidate is reconstructed in a certain final state, the measurement of Acp
requires the knowledge of the flavour of the other B (called tag B: B,g). The asymmetry
defined in Eq. 2.1, also called direct CP asymmetry, can be measured simply by counting
the number of B and B mesons decaying in self tagging final states (as B® — K*¥7~
and B® — K~7%). In the case of time-dependent CP asymmetry, it corresponds to the
parameter C' of the time evolution of the B°B® quantum system, when one of the B’s

decays into a CP eigenstate:

At

T

e
T (At) =

(1 £ Ssin(AmgAt) F C cos(AmgAt)) (2.2)

4T
where Fgg corresponds to the flavour of the tag BY (B°). The most powerful strategy for
measuring CP violation, is to measure the parameter S of Eq. 2.2, which is connected
with the weak phase that produces the CP violation.

The main two ingredients to measure the time-dependent C'P asymmetry parameters

in Eq. 2.2 are:
1. the knowledge of the flavour of the other B meson (flavour tagging procedure);

2. the measurement of time distance between the two B decays At. This is the one

of the main goals of an asymmetric B-factory, as the BABAR experiment. In such
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an experimental framework, At information can be accessed measuring the spatial
distance Az between the decay vertex of the signal B and the decay vertex of the
By,y, through the relation

Az = ByAt (2.3)

In the following we will discuss the B flavour tagging and the methods to determine the
decay vertex of a B meson. For this purpose, we will present two techniques to reconstruct
the decay vertex. The standard one is used for the decay B® — K+tK~KY for which
there are two charged tracks originating directly from the B vertex. A different vertexing
technique has to be used for B® — K2K?K? decays, for which there are no charged
tracks from the primary vertex. In this case the information on the vertex position is
extrapolated using the K? flight direction and the knowledge of the beam spot position.
This technique is called Beam Spot Constrained vertexing.

Both the tagging and the vertexing techniques avoid the inefficiencies of the exclusive
reconstruction of the other meson by inclusively inferring its flavour and decay vertex
from its final decay products. In order to estimate their performance, the flavour mistag
probabilities and vertexing resolution are measured on a sample of fully reconstructed B
decays to self-tagging final states, where the physics of the flavour and time structure of

the events are known.

2.1 b-Flavour Tagging

Neutral B mesons often decay to final states, which are only accessible to either a b or a
b quark, therefore revealing the meson’s flavour. For example, a positively charged lepton
from B® — D*~I*v identifies the presence of a b quark and allows the meson to be tagged
as a BY. Despite the impressively large number of B decays recorded by BABAR detector,
the reconstruction efficiency of such self-tagging modes, along with the small branching
fraction of CP final states, produces insufficient yields to exclusively reconstruct also the
tagging B. However an inclusive method, which allows b flavour tagging on a probability
basis, provides adequate information for CP measurements.

The BABAR flavour tagging algorithm is designed to exploit correlations between the
b flavour and the charges of the final products of six distinct b quark decay modes. It is
tuned and tested on Monte Carlo events where the flavour of the B mesons are known.

However, since the Monte Carlo does not perfectly reproduces the data, the performances
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Decay mode

Branching fraction (%)

BY = D n+ 0.28 £ 0.02
B — D*p* 0.73 + 0.15
B® — D*af 1.30 & 0.27
B — D+t 0.30 £ 0.04
B — D p* 0.78 £ 0.14
B° — D=af 0.60 + 0.33

Table 2.1: The measured branching fraction of the fully reconstructed self tagging B
decays in the BReco sample

of the tagging algorithm are tested on samples of fully reconstructed B decays (the so-
called BReco sample). Table 2.1 lists the seven self-tagging B decays which are fully
reconstructed to compose the fully BReco sample.

The performances of the tagging algorithm are quantified by the parameter
Q=¢"(1-2w)*=¢'D? (2.4)

where € is the tagging efficiency, defined as the fraction of events to which a b flavour tag
can be assigned and the mistag fraction w, defined as the fraction of events for which the
tagging algorithm mis-identifies the flavour of the B meson; D = (1 — 2w) is defined as
the dilution factor associated to the tagging algorithm.

Large values of the quantity @) indicate good tagging performance, since they come
from a large fraction of tagged events and/or a large probability to get the right answer
from the algorithm. In particular, we will show (Sec.2.1.7) that the error on S = sin 2/
in the time-dependent CP asymmetry is proportional to \/m

In the following we present the different decays which are used by the tagging algo-

rithm.

2.1.1 Leptons from Semi-leptonic Decays

Semi-leptonic B — Xlv decays (Fig. 2.1a), which constitute roughly 20% of the B branch-
ing fraction, produce electrons or muons whose charge has same sign as the b quark. Since
these leptons are the primary product of the virtual W boson emitted by the b quark, they
carry large momenta p; in the center of mass of the B and may therefore be distinguished
from softer secondary leptons from b — ¢ — 5 transitions (Fig. 2.1b) which exhibit the

opposite lepton/b quark correlation. The primary leptons are also faster than most pi-
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Figure 2.1: Leading lepton producing neutral B meson decays. The b quark and lepton
charges are correlated in (a) B — Xlv and anti-correlated in the (b) b — ¢ — 5.

ons and kaons produced by B decays, allowing additional discrimination of misidentified
leptons and also permitting purely kinematic selection of the B — Xlv lepton when no
particle identification is available.

Three separate neural networks (N N) recognize primary leptons. Two of them exam-
ine identified electrons or muons, while the other considers only kinematic informations.
In addition to p;, these NN also moderately benefit from two other kinematic variables:
the total energy in the hemisphere defined by the W direction, which is generally smaller
for B — Xlv than its inclusive backgrounds, and the CM angle between missing momen-
tum (i.e. the v direction) and the primary lepton, which is also small for real semi-leptonic
decays. Ultimately kinematics and strict lepton identification make the semi-leptonic B
decays the cleanest and hence most reliable flavour tagging signature. Though tagging
using leptons is not very efficient (e ~ 9%), it is very accurate (w =~ 3%), resulting in

Q ~ 0.08.

2.1.2 Kaons from b — ¢ — s Transitions

The correlation of final state kaons and the b quark charge comes from the hierarchy
among elements of CKM matrix involved in B and D decays. The average number
of positively charged kaons in the BY decay products is 0.58 &= 0.01 & 0.08, while the
negatively charged kaon multiplicity is 0.13 +0.01 £ 0.05 [32]. Fig. 2.2 shows an example
aof b — ¢ — 5 transition which produces each of the three kaon sources which are relevant
in this case. The 5 quark in the b — ¢ — 3 transition is the primary source of the positive
(or right-sign) correlation between the b quark and kaon charge. However, the decay
chain of the ¢ quark also generates a W boson, which occasionally produces kaons. In the

specific process diagrammed in Fig. 2.2, the W7 boson produces a Cabbibo suppressed
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Figure 2.2: An example of a b — ¢ — § transition which produces kaons whose charge
has both the same and opposite sign as the b quark.

uS quark pair, which results in another right-sign kaon. The W~ boson from the ¢ decay
results in a wrong-sign kaon. Unlike the case of leptonic tagging, no kinematic separation
between the right and wrong sign kaons is available, since kaon identification is left as the
only signature, resulting in a less clean tagging. The tagger identifies kaons using one NN
which examines the three best kaon candidates and determines the b flavour from the sum
of the product of each kaon charge and likelihood to be a kaon, which is calculated using
the DCH dFE/dx and DIRC 6. measurements. Flavour tags from kaons are generally more
efficient than lepton tags, but less accurate. The best kaon tagged events have ' ~ 17%
and D = 0.8 resulting in () =~ 0.11.

2.1.3 Soft Pions from D** Decays

In the decay D** — D%r*, the D** and D° masses are so close (=~ 142 MeV/c?) that
the additional pion carries very little momentum and flies in the same direction as the
DP. This pion is usually described as slow or soft. When the D* originates from a B
meson decay, as in Fig. 2.3, the D* charge and hence its slow-pion charge are opposite
to that of the original b quark. The slow-pion NN is a neural network which examines
pions with CM momentum p; less than 250 MeV and identifies a slow-pion from its
momentum pj , the angle between its flight direction and the thrust axis of the rest of
the B meson products, and particle identification information. Another NN attempts
to exploit correlations between the kaon and slow-pion from the D* to produce a more
reliable tag. This neural network-based algorithm examines all oppositely charged slow

pion and kaon combinations along with the kaon likelihood, the slow-pion NN output,
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Figure 2.3: Diagram of B® — D* 7" p" af decays, producing a soft pion (7;) whose

charge has the opposite sign as the b quark. In contrast the 7+, p*, or af emitted from

the W carry the same charge as the b quark.

and the angle between the kaon and slow-pion. The resulting performance is ¢ ~ 14%

and D = 0.35, resulting in a Q ~ 1.8%.

2.1.4 Hard Pions from B — D*~nt, pT, af Decays

The charge of the virtual W™ boson in Fig. 2.3 carries the same sign as the b quark charge.
When this boson hadronizes into a pion (or into a p*, or af), the b quark flavour may be
identified from the characteristically fast momentum of this prompt B meson product. A
maximum p* NN attempts to capture the b flavour from these particles by selecting the
track with the highest CM momentum which originates from less than 1 mm far from the
beams in the x —y plane. This procedure also captures prompt leptons which were missed

by the lepton NN and which fortunately have the same charge/b flavour correlation.

2.1.5 Fast-slow Correlations and A Baryon Decays

Two additional kinds of information can be used to increase the efficiency of the tagging
process. This information is usually based on a weak correlation among a physics process

and the b quark charge, resulting in a higher mistag rate probability.

Fast-slow Correlations

The b flavour can be inferred in events where in the B rest frame the soft pion coming

from the decay of a D** is found together with a opposite charge track which comes from
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e (%) Ac ()  w ()  Aw () Q%) AQ (%)
Lepton 867008 01+£02 30£03 -02=£06 7.67+0.13 0.14 £ 0.42
kaon I 1096 £ 0.09 0.1 £+£0.2 53+£04 -0.6=L0.7 874=£0.16 0.27 £ 0.53
kaon II 1721 £ 0.10 0.1 £03 155 £04 -04£0.7 821 £0.19 0.25 £ 0.57
kaon-pion 13.77 £ 0.10 -0.5 £ 0.3 23.5 £ 05 -24 £0.8 3.87 £0.14 0.56 £ 0.40
pion 1438 £0.10 -08 £ 0.3 33.0£0.5 52+0.8 1.67=£0.10 -1.12 £ 0.27
other 9.61 £0.08 05+02 419£06 46+09 0.25=£0.04 -0.27 £ 0.10
Total 74.60 £ 0.12 -0.6 £ 0.7 304 +03 -02=£1.0

Table 2.2: Summary of tagging performances: tagging efficiency (€'), mistag probability
(w) and @ factor.

the W boson exchange. The angular correlation allows to determine if the two particles

are back-to-back, as expected.

A Decays

The presence of a A baryon is a good signature of a b — ¢ — 5. A A baryon, reconstructed
in the final state pm—, is a signature of a B® decay, while a /A, reconstructed in the final

state prrt is a signature of a B® decay.

2.1.6 Combining the Tag Signatures

A given set of particles belonging to a B meson may exhibit the signature of any number
of the described six flavour-tagging physics processes, and therefore may be identified by
several of the seven NN. In general, each NN i may provide an output r{ whose sign
and magnitude reflect the B flavour and the confidence in the result. A higher level NN
attempts to optimally combine these outputs in order to produce an output r, which
captures the most reliable tag of the meson flavour considering all available information.

The low-level NN and the high-level NN outputs, r¢ and ry , are fed to a decision
algorithm which assigns the tag to one of six hierarchical and mutually exclusive physics-
signature categories (in descending order of reliability): lepton, kaon I, kaon II, kaon-
(slow)pion, (slow)pion and other (mostly hard pions). Events which do not satisfy the
requirements of any of these categories are marked as untagged.

In this way, the overall tagging performance is Q = 31%, as shown in Table 2.2. The
remaining 25% of untagged events has w = 0.5 and Q = 0.
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2.1.7 Tagging Imperfections

The Monte Carlo event generator incomplete knowledge of B branching fractions and the
not perfect simulation of the detector response makes necessary to extract from data the
values of these quantities that define the tagger performance. This is made possible since
B° mixing may be exploited to measure tagging parameters. In fact, applying Eq. 1.51 to
B decays to a flavor eigenstate, one obtains the time-dependent probability distributions

for four different possible flavour combinations:

At

Tpogo(A) = Tpgo po(Al) = = (1 + cos(Am,At)),
_lat]
Tpopo(At) = Tgozo(At) = (1 — cos(AmgAt)), (2.5)
’ T

where the cos(AmgyAt) terms are due to B°-B° mixing. These two decay distributions are
usually referred to as the unmized and mized probabilities, respectively. For the extraction
of the tagging performance, one B meson (B,..) is fully reconstructed, so its flavour is
known. Then the tagger is supplied to the particles which are not daughter of B,.., in
order to determine the flavour of the other B. Several imperfections in this procedure

modify Eq. 2.5. In particular for a tagging category :
1. The tagging algorithm may produce a wrong-tag. We will denote this mis-tag
probability as w;.
2. There may be different mis-tag probabilities, w;; and w;_ for B® and B° tags. So
w; = (wi+ + wi,)/Q
3. The tagging process costs on efficiency €., which depends on tag signature
4. There may be different efficiencies, ¢*;, and ;_ for tagging a B® and B°

5. There may be different efficiencies, €, and £”;_ for fully reconstructed B° and B°

6. There is an experimental resolution associated to the measurement of At. We will

address this issue in Sec. 2.2.4.

Using these definitions and Eq. 2.5, the probability distribution for observing an event
with a tagged flavour T'= 4 (+ = B, — = BY) for one meson and reconstructed flavour
R = &+ for the other is:

€"i(R)

P(ALT, R) = i) (1 = wir) Ly + €'inywic-r L -rm)] - (2:6)

€"i(r) T €"i(-R)
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where the first term in the sum is for the correct (7', R) tags and the second term ac-
counts for mis-tags which are actually (=7, R). Rearranging this expression and properly

normalizing in each category !, one obtains

g 1+ Ry _1ay
76 T

P(Ata Ta T, R; dz) = X

871 - i

where & B; = (1 + T%) and the parameters ¢; are

=__ 1
- 1+(7’Amd)2’
e D, =1 — 2w;, which is called dilution,

e the dilution difference AD; = 2(w;— — w;y),

. . . e 757_
e the reconstruction efficiency asymmetries v; = 4——
er tei
. . . et —gt
e tagging efficiency asymmetries p; = ﬁ, and
i+ i—

e the average tagging efficiency ef = Z(ef, +el_).

Then, if the At resolution and flavour tagging were perfect, the asymmetry as a

function of At
Nunmix(At) - lex(At)

Nunmix(At) + NmiX(At)
would describe a cosine function with unit amplitude (Eq. 2.5). The effect of the tagging

Apixing (At) = (2.8)

imperfections on the At distributions for mized and unmized events is shown in Fig. 2.4.
The asymmetry goes through zero near 2.1 BY proper lifetimes and the sensitivity to
Amyg, which is proportional to At?e "2 sin> AmyAt, reaches a maximum in this region.
The mistag fraction, and the resolution parameters can be extracted from this mixing
asymmetry simultaneously to Amy.
The effect of tagging on time-dependent C'P measurements, where the flavour of the
fully reconstructed B meson is unknown, is similar. Incorporating the tagging flaws into

Eq. 2.1 leads to the probability distributions

A &; 1 _ 1At

( [MTDZ- L0+ TAfi)} 4 [TDZ- (1 + TAQDi)D A(AY)

!The normalization requires that the probabilities of observing each of the four flavor combinations
in each category add to the probability of tagging in that category, i.e. Y . p Pi(At, T, R) = &;.
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Figure 2.4: Expected At distribution for mized and unmized events a) with perfect tagging
and At resolution, and b) with typical mistag rates and At resolution.

where A(At) = Ssin(AmgAt) F C cos(AmgAt). Setting v; = p; = AD; = 0 in this
equation illustrates the result of mistakes by the tagging algorithm. In this case

gl lay

P(At,T) = 4—ie_ = [1 + TD;(S sin(AmgAt) F C cos(AmgAt))] (2.10)

T

and the only change in the functional form of Eq. 2.1 is the suppression of the amplitude
of the sine and cosine by D;. This effect, which is the dominant product of the tagging
algorithm, dilutes the difference between B° and B tags. To a good approximation, the

error on the determination of S and C'in category i is inversely proportional to Q; = &!D2.
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2.2 The B Vertexing and Measurement of At

We now describe the procedure to extract the At information. We start from the stan-
dard vertexing algorithm (GeoKin), where hadronic B decays are reconstructed using a
geometric constraint to the charged tracks of the event. This technique is applied to the
measurement of the CP asymmetry of B® — KTK~K° decays. We then describe the
Beam Spot Constrained vertexing algorithm, which is used for B® — KJK?K? decays.
In the first case, At is calculated in three steps which successively add information: the
determination of the B,.. vertex, the fit for the Az, and the conversion to At. In the
second, a fit of the full 7(45) decay tree, with a constraint on sum of the two B lifetimes,

is also applied.

2.2.1 Determination of the B,.. Vertex

Reconstructing a B candidate begins with the search for possible intermediate decay
products such as D mesons or neutral pions and kaons in decays to charged tracks and
neutral clusters combinations. The vertices of the composite particles are then simultane-
ously identified through a geometric fit which alters the momentum vector of the tracks
and neutrals with appropriate constraints on the masses and directions of the composite
particles. Neutral particles reconstructed in the EMC do not contribute to the vertex
determination due to the lack of spatial information near their production. The proce-
dure for finding the best vertex for B — KTK~K° candidates which will be described

in Sec. 6.3 is an application of this technique.

2.2.2 Fit for the B;,, Vertex

The By, vertexing algorithm examines the tracks which were not used in the reconstruc-
tion of B,... Though these particles are generally the final products of the By, decay,
those from intermediate states with long lifetimes do not originate from the B decay ver-
tex and must be eliminated. Therefore, oppositely charged track pair combinations are
removed when they are consistent with KY — 77~ or AT — pTn~ decays or v — ete™
conversions. Due to the large number of possible final states for D mesons, their decay
products are more difficult to eliminate directly. This would introduce a bias in the deter-
mination of the decay point of the Bi,, (charm bias). Instead, particles from secondary

D meson vertices are removed in an iterative fit for the By,, vertex, where each successive
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fit only considers tracks which contributed less than 6 units to the y? of the previous
iteration. This process stops when either all tracks satisfy the y? requirement or only two
tracks remain. Since the beam energies, beam spot, and the momentum and decay vertex
of B¢ are well determined, the kinematic and geometric constraints that By,, originates
at the beam spot with the momentum vector pg,,, = prus) —ps,.. improves the precision
of the vertex fit. Also, in order to correctly account for the correlations between the By,
and B,.. vertices induced by these constraints, oa, is directly measured in the fit, so it
reflects the errors on each track parameters, the beam energies, and the beam spot. Tests
of this algorithm on Monte Carlo events indicate that the difference between the true and
measured values of Az are well described by a triple Gaussian with less than 1% in the
widest component (see Sec. 2.2.4). The events which do not lie in this Gaussian (9.7 +
1.0% of the events) have an RMS of 190 pum and the events in the narrowest Gaussian

(89.9 + 1.0% of the events) have an RMS of 100 pm.

2.2.3 Conversion to At

The naive conversion Az = FycAt provides a good estimate of the time difference between

the decays of the two B mesons. However, the relation

AZ = ﬁfyfy:ecCAt + ﬁ)/ﬁ:ecﬁ)/:ec COS O:ecc <t7”€C + ttag) (2 11)

which takes into account the B momenta in the 7°(45) rest frame and the 20 mrad rotation
of the beams with respect to the z-axis improves At resolution by ~ 5%. Here 3%, 7.

and 07, respectively describe the velocity, boost, and polar angle of B,.. with respect to
the beam axis. (tyec + ttag), Which is the expected value of the sum of the decay times, is

estimated by 75 + |At|.

2.2.4 The At Resolution Function

Since the At resolution is dominated by the By, vertex, it is generally insensitive to the
final state of the fully reconstructed B,... Nonetheless, if the error on At is properly calcu-
lated, it must provide a measurement of the resolution of At in every event, consequently
reflecting any differences between decays. We may then expect to be able to describe
the At resolution for all B,.. final states which have common vertexing technique (as the
different sub-modes for B — KT K~ K") with single function of At and oas. As illus-

trated in Fig. 2.5a, studies of simulated events indicate that the measured oa; is directly
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Figure 2.5: (a) The RMS spread and (b) the mean of the residual &; = At,eas — Atprue
versus the measured o, in simulated B decays.

proportional to the RMS of At in simulated events. Therefore o, is indeed a measure of
the At resolution. In fact, the difference &; = At eas — Atirue between the measured and

true At is well described by the sum of three Gaussians:

core,tail ‘
5 - = T —— YV
R(61, oar; D) Ek: Srom2n P 2Swa? )

0 L/ B ( i ) (2.12)
Ooutl V 2m 200utl

with descending fractions of events feore, fiait, and fousier, and outlier width o,y = 8 ps.

The parameters v; are:
1. the fractions fy;
2. the scale factors Si;
3. the scaled biases b}

Note that the widths of the core and tail Gaussians are scaled by the measured oa; for
each event, taking advantage of this error estimate of the At resolution. Under ideal
conditions S, which corresponds to the slope in Fig. 2.5a, would be 1. This resolution
function also provides a shift in the means of the core and tail Gaussians to account for
any bias from secondary vertices of charm decays (i.e. D mesons) due to residual tracks
which are not removed by the iterative procedure (charm bias). The size of this bias is
different depending on the direction of the D meson. A D meson traveling parallel (as
opposed to perpendicular) to the beam axis pulls harder on the z coordinate of the By,

vertex. As Fig. 2.5b illustrates, this bias is proportional to the At resolution. Therefore



44 Time Dependent CP Asymmetry for Neutral B Decays

in order to better estimate the bias for each At measurement, the resolution function of
Eq. 2.12 exploits this correlation and scales the mean of the core and tail Gaussians by
oa:- Finally, since b flavor tagging separates events based on the signatures of a specific
set of B decays, the charm content of the final state depends on the tagging category.
Therefore, a different bias is used for each tagging category.

Once this function is convoluted with the resolution function of Eq. 2.12, the time-

dependent CP asymmetry is given by
Acp = D (Ssin(AmgAt) — C cos(AmgAt)) @ R(0t, oat; ;) (2.13)

The combined effect of the mistag and of the resolution effects on At distribution are

illustrated in Fig. 2.6.

arbitrary scale

5
At (ps)

Figure 2.6: At distribution for B® and B’-tagged CP events a) with perfect tagging and
At resolution, and b) with typical mistag rates and At resolution.

2.3 The Beam Spot Constrained Vertexing

While for the BY — KTK~ K" decays the B vertex can be exploited with the technique
described in the previous section, for the B — KJK?K? decays the tracks from the
K? — 77~ decay cannot be used in this way to determine the vertex of the B,.. because

of the non-zero lifetime of the K meson.
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A new vertexing technique has been developed by BABAR firstly for the measurement
of CP asymmetry in BY — K97% decays [31], which uses only the K? flight direction.

The basic point is that at an asymmetric B-factory, because of the Lorentz boost, the
momentum of the B is projected in the forward direction (p?’ < pfo). Because of that,
the BY transverse motion (which is &~ 30 um) can be neglected, and the B° decay vertex
position can be inferred by intersecting the K? — w7~ flight direction with the beam
trajectory.

The intersection is realized by constraining the B decay point to the beam spot on the
(x,y) plane and inflating the beam spot uncertainty by 30 um to take into account the
neglected flight length of the B meson on the transverse plane. This is justified by the
fact that the intrinsic beam spot size is & 4 um in y direction, &~ 200 ym in x direction,
i.e. about one order of magnitude less than the decay length of the B meson. This
introduces a bias in At measurement, because of the B meson lifetime is forced to be

zero, as illustrated by Fig. 2.7. This problem is then avoided applying the constraint on

old reconstruction
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Figure 2.7: Residuals At,,cqs — Atyue as a function of At,,eqs, for signal Monte Carlo
events of B® — K97% with old vertexing reconstruction, with the Beam Spot constraint
applied on the decay vertex of the BY.

the production point, rather than to the decay point of the B. For this purpose, a new

vertexing algorithm was developed, TreeFitter, which is designed to fit an entire decay



46 Time Dependent CP Asymmetry for Neutral B Decays

tree simultaneously, using the Kalman filter technique [33]. TreeFitter can be applied
simultaneously on the entire 7°(45) decay tree, including both reconstructed and tagged
side. This feature offers the opportunity to apply the constraint on the production point
of the two B mesons, avoiding the bias, but paying in terms of resolution on At, which is
in part improved by the implicit lifetime constraint. The worsening in the At resolution
is less evident in B — KYKYK? than in B — K% because of the presence of multiple
K?’s adds vertexing information. This can be seen in part in the sub-mode with only two
K? — nt7~. However, the bias can be removed (Fig. 2.8a) and the original resolution,
~ 1.4 ps, retained (Fig. 2.8b) by applying a constraint on the sum of the lifetimes of
the two B mesons on the 7°(45) decay tree. From Fig. 2.8a, it is evident that after this

(a) (b)
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Figure 2.8: (a) Mean and (b) width of the residuals At,,cqs — Atye as a function of At,eus,

for signal Monte Carlo events of B — KYKYK?, in the sub-mode with one K2 — 797°.

The resolution in At is also better for the sub-mode with all three K? decaying into
7T 7~. This distributions are obtained after the Beam Spot Constraint vertexing on the
production vertex of the B and the B,.. and By, lifetime sum constraint.

constraint is applied, only the constant offset of ~ -0.2 ps on the At residuals is left,
coming from the charm bias. This bias is present also in the nominal vertexing, and
is already taken into account by the scaled bias parameters of the resolution function
(Eq. 2.12).

Since the described vertexing algorithm does not include the b flavour tagging, the full
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procedure is made by three steps:

1. the B° candidate is fitted with TreeFitter with a 3D Beam Spot constraint on the

B production vertex;
2. the fitted candidate is passed to the default BABAR tagging and vertexing algorithm;

3. the resulting 7(4S) — BB candidate is refitted with TreeFitter applying the B
lifetime constraint. A Gaussian uncertainty of v/20(73) is associated to the sum of

the two B lifetimes.

The standard tagging and vertexing algorithm of step (2) applies a beam spot constraint
to the B candidate, which is incorrect since that constraint is already applied before the
tag vertexing is called. However, the final 7°(45) fit takes care that all constraints are
applied only once.

Since TreeFitter uses a Kalman filter with a high number of degrees of freedom, in
the case of B — KYK2K? with one K9 decaying into 77 sub-mode we do not include
the poor vertexing informations which come from K? — 7%7° decays. This reduces the

number of failed fits to the B vertex to a negligible level.

2.3.1 SVT Classes Definition

The B vertex determined with beam Spot constraint relies on the determination of the
K? flight direction, then the resolution in the vertex strongly depends upon the point in
the inner tracking system (SVT) in which the K? is decayed. This is shown in Fig. 2.9,
where the average resolution is shown as a function of K? decay length, superimposed to
the events distribution for B® — KYKYK?. Tt is clear that the K° mesons decaying in
the outer part of the SVT (the step near 12 cm in the (z — y) plane correspond to the
fourth layer of the SVT) are useless for a determination of B vertex.

We define four different and mutually exclusive classes of K2 which describe the ver-

texing quality:

e (Class I — decays, having both pions with at least 1 ¢ and 1 2z hit in any of the first
three inner SV'T layers.

e Class II — decays, having both pions with at least 1 ¢ and 1 z hit in the SVT (not
belonging to class I). These events mostly correspond to K2 decays beyond the inner

3 SVT layers.



48 Time Dependent CP Asymmetry for Neutral B Decays

I—|O.18 T T T T T T T T T T T T T T T T
20.16
N\

N0.14 |

1#\\‘\\\‘\\\

¥
Vo.121 base, O

—o—
°-
-e-
-®
—+—|

0.1f :
0.08[~
0.06-
0.04 ORR:
0.02[;

O 1 1 1 1 l 1 1 1 1 l 1 1 1 1 1 | I 1 |
0 5 10 15 20

K ¢ flight length wrt the B in xy plane [cm]

Figure 2.9: Average estimated uncertainty in zpo (dots) as a function of the K9 de-
cay length. The steps in the distribution indicate the position of the SVT layers. The
superimposed histogram shows the decay length distribution (with arbitrary scale) for
B — K2K?K? signal Monte Carlo events.
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e (Class III — decays where either of the two pions has at least one SV'T hit, but that

do not satisfy the requirements of class I or II.
e (Class IV — decays where neither pion has any SVT hits.

Since only one K — 777~ is necessary in determining the B® vertex, when more than
one K? — 777~ is present in the final state, we define the BY class as the best class
associated to the KQ’s. For this reason the presence of the three or two K? useful for
the vertexing procedure makes the fraction of best B classes high (See 7.5). We show in

Fig. 2.10 we show the oa; distribution for the four classes. The most of event belongs to

—
V7] Class1 |
Eclassi {
FZclassin 4

Class IV

i

0.‘15 0iz
6(2) [em]

Figure 2.10: Distribution for the estimated uncertainty in At for signal Monte Carlo
events of B® — KYKOK(7%70).

the first two classes. The Class IV events are rejected since the resolution in At is worse
than 2.5 ps (events which we reject also in the standard vertexing). We do not use also
Class IIT events because of poor vertexing informations. We define as Good candidates
for the time-dependent fit those events belonging to Class I or Class Il and satisfying the
requirements |At| < 20 ps and oa; < 2.5 ps. The fraction of Good events is about 98% for
submode with all three K?’s decaying into 777~ (we will denote it with KXKYKY(nt 7))
and 93% for KYKYK2(m'7?) submode (we will denote it with KYKJIK?(7°7?)). The not
Good events (Bad events) are not rejected in the analysis, since they are useful for the
signal yield extraction and for the determination of direct CP asymmetry C' for which
only the tag information is needed.

The largest contributions are the uncertainty on the K? trajectory and on the position
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of the beam spot. The beam spot contributions can be expressed as:

b ? b 7

2 Yy z

g = E— + =
z,beam ( ypz) ( acpz)

1 {sin2¢ N cos? ¢] - '

2 2 2
tan“f | o7 o2

(2.14)

Fig. 2.11a shows the estimated o, uncertainty as a function of the polar angle of the K?
flight direction (for Good events). The best vertex determination is achieved when the
K? flights in the orthogonal direction to the beam axis. Fig. 2.11b shows o, distribution
as a function of the azimuthal angle of the K2. The expected not flat contribution of the
beam spot as a function of the azimuthal angle comes from the asymmetry introduced by
the beam spot constraint, since the beam spot position is known with different precision
on the z and y directions. The real distribution becomes again flat thanks to the third
step of the B vertexing, which, applying a further constraint on the 7°(4S5), decreases the
dependency from the beam spot introduced by the first step.

2.3.2 Validation of Vertexing Procedure

The vertexing procedure has been validated for the B — K210 decays, which uses the
same vertexing technique. The validation makes use of the more abundant and more clean
decay B — J/ K9, ignoring the informations coming from the charged tracks which are
the decay products of the J/ip, and applying the same beam spot constrained vertexing
procedure (determination of “mangled” At).

Assuming as the true value the At value obtained with the standard technique, one
can evaluate the agreement of the two results. In these tests, the mangled B — J/) K?
candidates and the B® — K97° show the same properties in both the At resolution
function and the determination of the BY decay position. This feature is related to the
fact that the total resolution, in both cases, is dominated by the tag side. As a consequence
of this, even if the two vertexing techniques are different, we do not expect differences in
the description of the At resolution function, thanks to the smearing effect of the By,
vertex reconstruction.

In order to prove that the validation done for B® — KQ7" is valid also for B® —
K?K?K? we compare the properties of the At residuals and of the Az resolution, using

signal Monte Carlo samples of the two decay modes. We observe an optimal agreement
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Figure 2.11: Distribution for the estimated uncertainty in z (dots) for B® — K2KYK?
signal Monte Carlo events as a function of the K? polar angle (left) and azimuthal angle
(right). The red dashed line represents contribution from the beam spot only after the
first step of the B vertexing (Eq. 2.14). The superimposed histogram shows the angular
distributions of the KY with the best class, with arbitrary scale.
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between the two samples, so that any conclusion of the B® — K270 validation study can
be used even in this case.

We use the At resolution function defined by the Eq. 2.12, and we will use the data-
Monte Carlo (dis)agreement in mangled B — J/i) K? events to evaluate a systematic

uncertainty associated to the vertexing technique (Sec. 7.5).



Chapter 3

Measurement of CP Violation for

Three-body B Decays with Dalitz
Plot Analysis

In general, the decay of the neutral B meson into three kaons is not a CP eigenstate,
due to the presence of CP-even and C'P-odd contributions. This mixture of two opposite
CP contributions can dilute the measurement of the time-dependent CP asymmetry. The
best way to take into account this feature of the three body B decays is to measure CP
violation simultaneously to the CP contributions, with a time-dependent analysis of the
B Dalitz plot [34].

This approach will be used for the decays of the neutral B meson into KK~ K°.

Moreover, a Dalitz plot analysis of neutral B decays that includes time-evolution
of the BOBY pair was proposed as a way to remove ambiguities in the measurement of
angle  in BY — 7771~ 7% decays [35]. A similar method was proposed for ambiguity-free
measurement of § in B — DPP decays, where P is a pseudoscalar meson [36].

In our case, the interference between CP-odd and CP-even amplitudes can be used
to measure the CKM angle § in a penguin dominated decay mode of the B meson. The
comparison of the angle # measured in this decay with the value measured in tree-level
dominated modes like B® — [c] K° [37, 38] constitute the most powerful way to search

for physics beyond the Standard Model in b — s transitions [100, 101, 102]

3.1 Time-dependent Decay Rate of B’ — K™K~ K"

The decay rate for the B — K+ K~ K decay can be written as a function of the flavour of

the initial state ¢, the time difference between B° and B° decay time At and the position
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in the three body phase space as:

dP(At7 q,mia, m13) . 1 1 €*|At|/7 "
dAtdm3,dm3, — (2m)332M3, 4t
1A + A (3.1)

+ncpq 2Im (./ZLA*6721'5) sin AmgAt
—q <|A|2 — ],é_l}2> cos AmgAt]

where we have assumed ¢/p = e~%# in the B’ — B® mixing. The invariant masses of the B
daughter pairs m;; = (p;+p;)?, where py, ps and p3 are the four-momenta of the K, K,
K9 respectively, are called Dalitz plot coordinates. They represent a way of describing
the position in the KK~ K phase space (decay kinematics). The sign ¢ = +1 (—1) is
for decays of B? into KK~ K? (K"K~ K?), when the other B meson is identified as a
BY (B) using the tagging technique. The A (A) is the complex amplitude for the decay
B - KTK-K° (B® — Kt*K~K"). It contains the three-body decay dynamics (See
Sec. 1.6.1). We will discuss in the following sections the phenomenological model used to
describe this amplitude.
Using the four-momentum conservation in a three-body decay one can write the rela-
tion
Mo +mi +mj +mj = miy +mis + mi; (3:2)
which allows a choice of only two independent invariant masses of daughter pairs to
describe the decay dynamics of a spin 0 particle. In the following, we will use this

convention for the indices: mis = Mmg+x—, M13 = Mg+ K0, Moz = M- KO.

3.2 Dalitz Plot Model and K-matrix Formalism

The K-matrix formalism provides an elegant way of dealing with strongly overlapping
resonances and multi-channel dynamics (resonances). It allows to generalize two-body
channel amplitudes to resonance production with final-state interaction. It was originally
introduced by Wigner and Eisbud [39, 40] for the study of resonances in nuclear reactions.
The first use in particle physics goes back to an analysis of resonance production in K7
scattering by Dalitz and Tuan [41]. Figure 3.1 displays a typical two-body scattering
process for which unitarity is a strong requirement. Such a reaction can be parameterized
in terms of the K-matrix and it can be extended to describe the decay process of a B

meson into three daughters, as presented in Fig. 3.2.
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(e (e

Figure 3.1: Top: Local interaction. (a) Single channel resonance of mass mqy with cou-
plings 'y and T'y to the initial and final state, respectively. (b) Two channel rescattering
during the lifetime of the resonance.

3.2.1 Two-body Scattering

S-matrix formalism was developed by Heisenberg in 1942 [42]. In general, the amplitude

for an initial state |¢ > to be found in the final state |f > is written as:
Sy =< fI8li> | (33)

where S is called the scattering operator. One may remove the probability that the initial

and final states do not interact at all, by defining the transition operator T" through:

S =1+2i\/pT\/p, (3.4)

where [ is the identity operator. The factors 2 and ¢ are introduced for convenience. p
represents the phase-space matrix and it is diagonal by definition.

From conservation of probability, the scattering operator S is unitary:
SSt =515 =1. (3.5)
From the unitarity of S follows that:
(T +ip)t = (T7' +ip) (3.6)
which leads to the definition of the K-matrix:

K =(T"'+ip) . (3.7)



96 Measurement of CP Violation for Three-body B Decays with Dalitz Plot Analysis

Bs Bs

Figure 3.2: (a): Single resonance production. (b): Single resonance and non-resonant.
(c): Single resonance and rescattering.

From Eq. 3.6 one finds that the K operator is Hermitian:
K=K, (3.8)

From time reversal invariance of S and 7' it follows that the K operator must be sym-
metric, i.e. the corresponding K-matrix is real and symmetric.
It is possible to eliminate the inverse operators in Eq. 3.7 by multiplying by K and T’

from left and right and vice versa, to obtain:
T=K+iKpl =K+ iTpK |, (3.9)

obtaining for 7"
T=K(I-ipK)'=(I+iKp) 'K . (3.10)

Then, the T matrix is complex only through the i which appears in this formula, i.e. 71

has been explicitly broken up into real and imaginary parts.

3.2.2 Resonances in the K-matrix formalism

There are two possibilities for parameterizing resonances in the K-matrix formalism:
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1. Resonances can arise from constant K-matrix elements with the energy variation

supplied by phase space
2. from strongly varying pole terms corresponding to a phase motion [43].

They differ in their dynamical character. In case (1) they are assumed to arise from
exchange forces in the corresponding hadronic channels (molecular resonances), so that
dominant effects are expected near corresponding thresholds. The latter (2) (normal reso-
nances) correspond to dynamical sources at the constituent level, coupling to the observed
hadrons through decay [43]. The dynamical origin of resonances has to be determined
experimentally. In the approximation that the transition amplitude is dominated by res-

onance production (scattering) one form for the K-matrix is the following:

L gai(m)gaj(m) Cis
K Za: oo =) (3.11)

where ¢ and j are referred to the initial and final states, the sum on « runs over the

number of poles with masses m, and the coupling (or residual functions, expressed in

units of energy; s = m?) are given by:
Gai(m) = mala; | (3.12)

where g,;(m) is real (but could be negative) above the threshold channel i. The
constant K-matrix elements have to be real and unit-less to preserve unitarity. The

corresponding width T',(m) is
To(m) = Tai(m) (3.13)

for each pole a. In the simplest case of an isolated resonance and one single channel open
it reproduces the Lorentz-invariant Breit-Wigner resonance formula.

Let us consider a single, well isolated resonance o coupling to n open two-body chan-
nels, where the mass m,, far above the thresholds of all two-body channels. The partial
widths may be given by the expression:

Loatm) = %0 _ 3210 B2 (g1 0.0 (3.14)

and the residual function by:

Jai (m) = YaiV manBl;ai(Qiy Qai)\/@ . (315)
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where ¢n.; = ¢i(mg) is the breakup momentum [44] in channel i at the K-matrix pole
m = M.

The Bj..i(m) are ratios of centrifugal barrier factors in terms of the momentum in
channel i and the resonance breakup momentum for the orbital angular momentum /.
Some of the parameterizations where some will be discussed in Sec. 3.2.3.

The 7’s are real constants (but they can be negative) and fulfill the normalization:
d k=1 (3.16)

which is motivated by unitarity. In practice, not all possible open channels are available

so that this normalization condition is difficult to implement. As fit variable is preferred:

ggi = Yai/ MY (3.17)

The residual function is then given by:
9ai (M) = GaiBriai(di: Gai) /P - (3.18)
The K-matrix total width T, and the K-matrix partial widths [,; are defined by:
Lo = Z Loi =T0 Z YaiPi(Mma) - (3.19)

From these relations it follows that:

g() o marai
“ pi(me) 7
I = ) Tapi(ma) (3.20)
..
2 o
Yoi = To 7
[0 pi(ma)

It is important to notice, that the K-matrix total width Iy, does not need to be
identical to the width which is observed in an experimental mass distribution nor with
the width of the T-matrix pole in the complex energy plane.

We will discuss the simple case of a Breit-Wigner resonance far above the threshold
for one possible open channel, in which the different definitions of widths coincide. If the
masses of the decay particles can be neglected compared to m,, it is possible to write
['(mg) ~TY. In terms of g2, the invariant K-matrix assumes the simple form:

ggigngl;ai(Qiy QQi)Bl;aj (qju qaj)
2. o

a_

K =

«

In particular the possibility that the ¢%’s can be negative is allowed.
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Figure 3.3: Ratios B;(m,m,) = Fi(m)/F,(m,) of Blatt-Weisskopf factors using a reso-
nance mass my, = 765 MeV/c* (marked by the line) for | =0,1,2.

3.2.3 Penetration factors

The threshold behavior of low energy scattering of hadrons may be studied in terms of a
non-relativistic potential V' of range R, where V(r > R) = 0 in the typical behavior of
strong interaction. Assuming purely elastic scattering of spin zero particles the potential
in its radial form is given as:

I(1+1)

2

V=V(r)+ (3.22)

r

the second term being the centrifugal potential. Assuming ¢R < [ near threshold, the
solutions of the Schrodinger equation approximately can be written in terms of the phase

shift 9; of the partial wave [
tan (6;)(¢R < 1) = 2q - a; - (9)* . (3.23)

The factor (q)* arises here due to the presence of the centrifugal potential and is ac-
cordingly called “penetration factor”. The factor a; is constant and is the “scattering
length”.

The pion creation of nuclear resonances is inadequately described by only ¢*. Hence,
Blatt and Weisskopf [45] proposed the more general form of the penetration factor which
is obtained by solving the radial equation for all ¢R. With these factors, the fits to
the (low-energy) cross sections become more realistic. Widely used are Blatt-Weisskopf

barrier factors according to Ref. [47]. They are given in terms of the ratio z = (q/qr)?,
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where gr corresponds to the range of the interaction. The factors Fj(z), normalized to

F,(1) =1, up to angular momenta [ = 2 are:

Fo(Z) = 1 y
2z

F(z) =\ (3.24)

1322
BE) =\ e

In general, the penetration factors are part of a more complex form factor. The

form factors parameterize the underlying interaction (vertexes)!. Hence, they introduce
a model dependence in the analysis. In many formulations, phenomenological corrections
are added to the penetration factors, which in practice are indistinguishable on data due
to their small in influence on the lineshape of resonances .

Fi(m)

Fig. 3.3 shows the ratios B;(m,m,) = Fiime) of Blatt-Weisskopf factors using a reso-

nance mass m, = 765 MeV/c? for [ = 0,1, 2.

3.3 Resonance Lineshapes

The decay dynamics of the B — KK~ K involve both single channel resonances, like
the ¢(1020) — K*K~, and double channel resonances. This situation occurs in the 7
S-wave, where the fy(980) is just at the K K threshold. There are further complications
due to strongly overlapping resonances for the w7 S-wave. They will be discussed in

Sec. 3.3.2.

3.3.1 One Channel Resonances

In the case of a single resonance with one single channel opened, the K-matrix assumes

the form:

mol'(m)

K = (3.25)

(mg —m?)p
where my if the mass of the resonance. The mass dependent width is given by:
p(m
rm) = o (") Blg(m).amo) (3.20
where I'g is the K-matrix width and ¢(mg) is the breakup momentum for the mass m(my).

Neglecting the angular momentum dependence of the amplitude, the invariant scattering

Las before, here a strong potential is assumed
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Figure 3.4: (a): Breit-Wigner amplitude squared (|pT|?) as function of invariant 7m mass.
The invariant amplitude |T|* is superimposed as dotted line. (b): wm phase shift § which
reaches 90° at the resonance mass.

amplitude is:

moro 2 1

T = B — .
mg I mg I zmof(m) (q(m)7QO) 00

(3.27)

Eq. 3.27 contains the usual Breit-Wigner form. In this simple case observed width and K-
matrix width are identical. The Breit-Wigner lineshape and the phase shift for the p(770)
( 77 elastic scattering) (mg = 765 MeV/c?, Ty = 110 MeV/c?) are shown in Fig. 3.4 (a)
and (b), respectively. The phase in degree is calculated from the complex amplitude T,

using the following relation:

5 = ? tan~ (;n;g))) . (3.28)

In the elastic case unitarity implies that the amplitude pT" can be identified with a
unitarity circle in the complex plane (Re(pT"); Im(pT')) centered at (0;0.5), which reaches
the maximum ¢ at the resonance position. This is the so called Argand diagram displayed
in Fig. 3.5. One can define the inelasticity as the deviation from the unitary circle inwards,
corresponding to intensity vanishing in the other channels the amplitude couples to. It

can be calculated from 7T as:

n =2/ (Re(pT))? + (Im(pT) — 0.5)2 . (3.29)
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Figure 3.5: Argand diagram of the Breit-Wigner amplitude pT: (Re(pT); Im(pT)). Since
the process is completely elastic unitarity demands that the amplitude follows the unity
circle. The dots are plotted at equidistant mm masses. The circle starts at (0,0). The
phase shift 6 and the inelasticity are marked.

3.3.2 Overlapping Resonances

In the case of two resonances of masses m4 and mp in 77 scattering at mass m 2 the
formulation of the K-matrix is:

mala(m)  mplp(m)

K = . 3.30
m% — m? m% —m? ( )
The mass dependent widths are given by:
M, q 9
T, (m) =T, (—) 1) B(g,q.)? . 3.31
) =Too (22) (£ Bla.an (331)

In the case |mp — mya| > |I'p + I'4| the K-matrix is dominated by either the first or
the second resonance, depending whether m is near m4 or mp. The transition amplitude
T is then reducible to the naive approximation:

mal’a(m) ] {m% mpl'p(m)

T2~ impT () (3.32)

T=Ty+1Tp =
AT s [mi‘—mQ—imAFA(m)

that is the sum of two Breit-Wigner form factors. This approximation is not always valid:
in the case of my = m4 = mp one can write:

mo(La(m) + Tp(m))

= m2 —m? — imo(I4(m) + L 5(m))

(3.33)

2This can occur in reality for the resonances A = f»(1270) and B = f»(1560) which are both broad
and close enough to each other to overlap in their tails: T4 = 180 MeV/c? and I'p = 160 MeV/c?.
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Figure 3.6: Two overlapping resonances with the parameters: my = 1270 MeV/c?,

L4 = 180 MeV/c?, mp = 1560 MeV/c*, Ty = 160 MeV/c*. The plot (a) shows the
amplitude squared, |T|?, for the two individual Breit-Wigner resonances. Plot (b) shows
the result of adding the resonance poles in the K-matriz (solid line). The dashed line cor-
responds to the naive sum of the two Breit-Wigner amplitudes | Ty + Tg|?, which exceeds
1 close to the resonance positions. Also the intensity does not drop to zero between the
resonance peaks. Plot (c¢) shows the corresponding Argand diagrams for the naive summa-
tion (open circles) and the K-matriz parameterization (black squares). While the latter
follows the unitarity circle the Breit-Wigner summation clearly is outside the unity circle
in contradiction to the unitarity requirement. Plot (d) shows the phase motion for the
K-matriz parameterization, where dashed lines mark the 900 and 2700 steps which cross
the phase shift at the masses my and mp.
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that is a single Breit-Wigner form, with the total width being the sum of the individuals
widths.
Fig. 3.6 shows that the unitarity is violated when two Breit-Wigner amplitudes are

added (T4 + Tp instead of T from K4 + Kp).

3.3.3 Two-channel Resonances

Here we discuss the case of the f5(980) which is coupled both to 7w and K K channel, the
latter being just over the threshold.
We consider a single resonance. The elements of the invariant K-matrix for the cou-

pling to two channels can be written:

2
Yimolg
Ki1="+“—"— 3.34
T2 —m? (3:34)
- T
Ky = Ky = 7%327%0 20 (3.35)
m3 —m
2
v3mol'o
Koy = "2 —— 3.36
22 m3 — m? ( )

The normalized couplings fulfill the condition: v + v3 = 1. Then the T-matrix is given

as:

molo Vf Y172 )
T = - 3.37
mg —m?2 — imeLo(p17? + p213) ( MY % (3.37)

We redefine the couplings according to Eqn. 3.20, so that:

gi = iV mol'o (3.38)

gi + g3 = moly (3.39)
and obtain:

T_

m

(3.40)

( nome )

MY

6 —m? —i(pigi + p2g3)
This formula was firstly proposed by Flatté in 1976 [48].

The fo(980) appears as a regular resonance in the 77 system. The comparable Breit-

Wigner denominator for m near m,. is:

mZ —m? —im,I, (3.41)
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in the resonance approximation. We can identify:

V2 ? |p2(mr)|
e e 3 e

1 |p1 (mr)|

m,.I’
r(, = ———% 3.42
° Mo (mr)’Y% ( )

in terms of the mass m, and width I'.. The p; is evaluated at m = m,, where T is
expected to reach its maximum value. But the formulas Eqn. 3.42 actually are not very
helpful to find starting points for fits to data. In practice the parameters my and I'y need
to be varied. The ratio 7 = (7/71)? is a priori correlated with the width. Only if the
lineshape is strongly distorted due to strong couplings to the second channel this can be

resolved.

3.4 The Production or Decay Amplitude

So far “formation” of resonances, observed in two-body scattering ab — cd has been con-
sidered. The K-matrix formalism can be generalized to describe the case of “production”
of resonances in more complex reactions. The key assumption is that the two-body system
in the final state does not simultaneously interact with the rest of the final state. This
model is called “isobar model” (See Fig. 3.2).

To preserve the two-body unitarity an approach was proposed by Aitchison [49]. The

Lorentz invariant amplitude, F', is given as:
F=(-iKp)'P=TK'P. (3.43)

This introduces the production vector P parameterizing the resonance production in the
open channels. For n contributing channels P and F' are n-dimensional column vectors.
If the K-matrix is given as a sum of poles (Eq. 3.11), then the corresponding P-vector

1s:

0
P Za: ﬁaBL;m(pz;?ngz)_g#?z;m(qz, o) (3.44)
where (3, (expressed in units of energy) carries the coupling of the resonance « to the initial
state. The centrifugal barrier factor, Br.qi(pi, Pai), is introduced ad hoc and depends on
the angular momentum in production, L. It is a function of the recoil momentum p; of

the resonance against the spectator. The constant (3, is in general complex ( 3, = b,e™,
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¢ is a phase due to the initial production process). For convenience 3, is formulated in
terms of the dimensionless (39

B = B0, [ > (92)% - (3.45)

1

In the case of an isolated resonance in a single channel, the P-vector is parameterized

as:
2
95814, 4
P =y Br(p,po) - slgl(_ mg) (3.46)
0
and Eq. 3.11 is written as: -
9081 (4, %)
0
The Lorentz invariant amplitude, F', is given as:
mol’ Bi(q,
F(m) = fo- Bu(p.po) - — 0o 4, 9) (3.48)
0

—m? —imol'(m)  po
This is the relativistic Breit-Wigner form multiplied by an arbitrary complex constant
(production strength) Gy and the centrifugal factor By (p,po). This form, obtained with

the K-matrix model, is equivalent to the one obtained with the Breit-Wigner model.

3.5 Non-resonant Amplitudes

Beside decays that proceed through intermediate resonances, there are also the so called
non-resonant decays that are not associated with any known resonant structure, but lead
to the same final state. It was found experimentally that B decays to three-body final
states could contain a large fraction of such decays. The origin of these decays is not fully
understood: they can come from kinematic tails of higher-B mass states, contact terms
or decays of wide scalar resonances.

None of the proposed theoretical parameterizations of the non-resonant decays repro-
duces well the features in data [26, 28, 50, 51]. For this reason, and because the large
fraction of non-resonant events in three-body B decays, a phenomenological parameteri-

zation is needed. This will be discussed in Sec. 6.6.1.

3.6 CP Violation in the Isobar Model

In Sec. 3.4 we described in general the production of resonances in the approximation

that the two-body system is the final state does not simultaneously interact with the rest



3.6 CP Violation in the Isobar Model 67

of the final state. In practice, in this so-called “isobar model”, we describe the complex
transition amplitude A of a B meson decaying into three kaons as a sum of individual

amplitudes, associated to the various resonances:

A= AB" — KK~ K% myp,my3) = Z e fr (3.49)
T
where ¢, are complex coefficients describing the strength and phase of each resonance
relative to other resonances (isobar coefficients). The Dalitz-plot distribution of each
resonance is described with a complex amplitude f,., and the index r runs over all resonant
states.

When the initial state is B meson, we have similar description

A= AB® — KYK™K$mig,miz) = > 6 fr (3.50)

r

where complex coefficients ¢, and ¢, are in general different.

3.6.1 Transition Amplitudes

In Equations (3.49) and (3.50), isobar coefficients ¢, give strengths and relative phases of
each resonance. Fach resonant state can be reached through tree and penguin topology
with different weak and strong phases. Applying unitarity of the CKM matrix, we can

write

e =V Vial + Vo Vral (3.51)

csTTr us—r

where the a' is often called Standard Model pollution. Defining a weak phase difference

~ and a strong phase difference §, we can re-write this for B° decays as
¢, = P (1 + é}e”e"‘”) (3.52)

where P, is strength of Cabibbo allowed “penguin” part and ¢ is fraction of Cabibbo

suppressed (“SM pollution”) amplitudes. Similarly for BY decays, we can write
& = Pe'” (14 &e e (3.53)

where we made assumptions of equal strong phases, strengths for identical decay topology

and a resonant state r. Parameters P,., ¢,, &, 0, need to be determined from a fit.
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Figure 3.7: Illustrates the mapping of dominant penguin and SM pollution amplitudes
and phases (Sec. 3.6.1) to the polar isobar parameters (Eqn. 3.55).

Fit Coefficients: Polar Coordinates

We choose the following parameterization of complex isobar coefficients in Eq.(3.49) in

terms of real fit coeflicients

¢ — co(14Db,) @rton) . ot (3.54)
& — ¢ (1—"0,) e or=0n) =8 (3.55)

where ¢, ¢ are the average amplitude and phase in B® and B° decays, respectively, and b, §
account for the asymmetry in the amplitude and phase. These parameters are determined
from a fit. The e*’ factor comes from mixing, and it is absorbed into the definition of
isobar amplitude for simplicity. Note that § is correlated with the §’s, or in other words,

we can define
Bers(r) =B+ 6, (3.56)

where we choose a constant offset 7 = Bgy = 0.379 so the d,’s are expected to be the
deviation from SM expectations.

The parameters P,, ¢, &., and J, from 3.6.1 do not map in a simple way to the
parameters ¢., ¢, b,, and ¢, in this section (e.g. The phases in this section are both
non-trivial combinations of strong and weak phases). A graphical representation of this

mapping is shown in Fig. 3.7. The n’s are CP-eigenvalues of the final states.



Chapter 4

The BABAR Detector

4.1 Introduction

The primary goal of the BABAR experiment is the study of C'P-violating asymmetries in
the decay of the B meson. Secondary goals are precision measurement of decays of bottom
and charm mesons and of 7 leptons, searches for rare processes accessible because of the
high luminosity of PEP-II B-factory.

The PEP-II B-factory is an eTe™ asymmetric collider running at a center of mass
energy of 10.58 GeV corresponding to the mass of the 7°(45) resonance. The small Q-
value of the 7'(4S) — BB decay results in B mesons almost at rest in the center of mass
frame. The electron beam in the High Energy Ring (HER) has 9.0 GeV and the positron
beam in the Low Energy Ring (LER) has 3.1 GeV. The 7°(4S) is therefore produced with
a Lorentz boost of By = 0.56. This boost makes it possible to reconstruct the decay
vertexes of the two B mesons, to determine their relative decay times At, and thus to
measure the time dependence of their decay rates, since, without boost, this distance
would be too small (~ 30 ) to be measured by any vertex tracker.

The BABAR detector [52] has been optimized to reach the primary goal of the C'P
asymmetry measurement. This measurement needs the complete reconstruction of a B
decay in a CP eigenstate, the flavor identification (tagging) of the non-C'P B and a
measure of the distance of the two decay vertexes. To fulfill these needs, a very good vertex
resolution, both transverse and parallel to the beam direction, excellent reconstruction
efficiency for charged particles and a very good momentum resolution, efficient electron
and muon identification, with low misidentification probabilities for hadrons, are required.

A longitudinal section of the BABAR detector is shown in Fig. 4.1. The detector inner
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Figure 4.1: BABAR detector longitudinal section.

most part is reserved for the silicon vertex tracker (SVT), then there is the drift chamber
(DCH), the Cerenkov light detector (DIRC) and the CsI electromagnetic calorimeter
(EMC). All those detector sub-systems are surrounded by a solenoidal superconductor
magnetic field. The iron used for the return flux has been instrumented (IFR) for muons
and neutral hadrons, like K and neutrons, detection.

The detector geometry is cylindrical in the inner zone and hexagonal in the outermost
zone: the central part of the structure is called barrel and it’s closed forward and backward
by end caps. The covered polar angle ranges from 350 mrad, in the forward, to 400 mrad
in the backward directions (defined with respect to the high energy beam direction). The
BABAR coordinate system has the z axis along the boost direction (or the beam direction):
the y axis is vertical and the z axis is horizontal and goes toward the external part of

the ring. In order to maximize the geometrical acceptance for 1°(4S) decays the whole
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detector is offset, with respect to the beam-beam interaction point (IP), by 0.37 m in the
direction of the lower energy beam.

A trigger system is used to separate collisions producing interesting events from those
that constitutes the noise, or the background, for instance, beam interactions with residual
gas. The trigger system is divided in two consequent levels: the level one trigger (L1) is
hardware based and is designed to have a maximum output rate of 2 kH z and a maximum
time delay of 12 s, while the other level (L3), software based, has a throughput rate

limited to 120H z in order to permit an easy storage and processing of collected data.

4.2 PEP-II B-factory

PEP-II is a system consisting of two accumulating asymmetric rings designed in order to
operate at a center of mass energy of the 7°(4.5) resonance mass, 10.58 GeV. Tab. 4.1 shows
the various sub-systems parameters: a comparison between typical and design values is
presented. As can be easily seen from the table, PEP-II parameters have exceeded the
project ones in terms of instant luminosity and daily integrated luminosity achieving

recently the peak value of 1 x 10** em =2 s~! with a daily integrated luminosity of 700 pb~!.

Parameters Design Typical
Energy HER/LER (GeV) 0.0/31  9.0/3.1
Current HER/LER (A) 0.75/2.15 1.48/2.5
# of bunch 1658 553-829
bunch time separation (ns) 4.2 6.3-10.5
0Lz (um) 110 120
oLy (um) 3.3 5.6
or. (pm) 9000 9000
Luminosity (103 em=2s71) 3 9
Daily average integrated luminosity (pb~!/d) 135 700

Table 4.1: PEP-II beam parameters. Design and typical values are quoted.

Data is mostly collected at 7°(4S) peak energy. Tab. 4.2 shows the active processes
cross sections breakdown at peak energy. From now on the production of light quark pairs
(u,d, s) and charm quark pairs will be referred to as “continuum production”. In order
to study this non-resonant production ~ 12% of data is collected with a center of mass
energy 40 MeV below the 7' (4S5) mass value.

PEP-II measures radiative Bhabha scattering to provide a luminosity fast monitor
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ete” — | Cross section (nb)
bb 1.05
cc 1.30
55 0.35
uil 1.39
dd 0.35
T 0.94
T 1.16
ete” ~ 40

Table 4.2: Various processes cross sections at /s = My 4s). Bhabha cross section is an
effective cross section, within the experimental acceptance.

useful for operations. BABAR derives the absolute luminosity offline from other QED
processes, mainly ete™ and ptp~ pairs: the systematic uncertainty on the absolute value
of the luminosity is estimated to be about 1.5%. This error is dominated by uncertainties
in the Monte Carlo generator and the simulation of the detector.

The beam energies of the two beams are calculated from the total magnetic bending
strength and the average deviations of the accelerating frequencies from their central
values. The systematic error on the PEP-II calculation of the absolute beam energies is
estimated to be 5 — 10 MeV, while the relative energy setting for each beam is accurate
and stable to about 1 MeV.

The interaction region design, with the two beams crossing in a single interaction point
with particles trajectories modified in order to have head on collisions, is realized with a
magnetic field, produced by a dipole magnetic system, acting near the interaction point.
The collision axis is off-set from the z-axis of the BABAR detector by about 20 mrad in
the horizontal plane to minimize the perturbation of the beams by the solenoidal field. In
this configuration the particles and the beams are kept far apart in the horizontal plane
outside the interaction region and parasite collisions are minimized. Magnetic quadrupoles
included inside the detector’s magnetic field, and hence realized in Samarium-Cobalt, are
strongly focusing the beams inside the interaction region.

In order to keep track of PEP-II beams displacement with respect to the BABAR
detector, the interaction point position is computed on periodic intervals, using two-track
events. Interaction region dimensions (beam-spot) computed in that way are ~ 150 pum

along z, ~ 50 um along y and 1 ¢m along z axis. The y dimension estimate is completely
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Figure 4.2: Integrated luminosity and obtained by PEP-II and collected by BABAR from
November 1999 to September 2006.

dominated by tracking resolution and can be improved by looking at luminosity variations
as a function of relative beams position. In particular, knowing the beam currents and
the x beam-spot dimension, it is possible to get a resolution on y (o,) ~ 5 pm, value
that remain stable within 10% in a one hour time scale. Those measurements can be also
verified offline by measuring the primary vertex of multi-hadron events .

Fig. 4.2 shows the integrated luminosity obtained by PEP-II and collected by BABAR
from the beginning of data taking (November 1999) to the end of August 2006. This
work will make use only of data collected in Run 1-5 data taking periods (before August
2006). This data sample corresponds to an integrated luminosity of 353 fb~! recorded at
the 7(4S5) resonance, corresponding to about 374 - 10 BB pairs.

!By reconstructing all the tracks in one event it is possible to have an estimate of primary vertex
position: 7°(4S) decay point in transverse plane. Given that the boost along the z axis produces a
relative displacement of the two B mesons this method has a relative poor resolution that get worse in
presence of long-lived particles.
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4.3 Tracking system

The charged particle tracking system consists of two different components: the silicon
vertex tracker (SVT) and the drift chamber (DCH). The main purpose of this tracking
system is the efficient detection of charged particles and the measurement of their mo-
mentum and angles with high precision. These track measurements are important for
the extrapolation to the DIRC, the EMC and the IFR. At lower momenta, the SVT

measurements are more important while at higher momenta the DCH dominates.

4.3.1 The Silicon Vertex Tracker: SVT

The vertex detector has a radius of 20 ¢m from the primary interaction region: it is placed
inside the support tube of the beam magnets and consists of five layers of double-sided
silicon strip sensors detectors to provide five measurements of the positions of all charged
particles with polar angles in the region 20.1° < 6 < 150°. Because of the presence of
a 1.57T magnetic field, the charged particle tracks with transverse momenta lower than
~ 100 MeV/c cannot reach the drift chamber active volume. So the SVT has to provide
stand-alone tracking for particles with transverse momentum less than 120 MeV /¢, the
minimum that can be measured reliably in the DCH alone. This feature is essential for
the identification of slow pions from D*~ meson decays. Because of these, the SVT has
to provide redundant measurements.

Beyond the stand-alone tracking capability, the SVT provides the best measurement
of track angles which is required to achieve design resolution for the Ceerenkov angle for
high momentum tracks. The SVT is very close to the production vertex in order to
provide a very precise measure of points on the charged particles trajectories on both
longitudinal (z) and transverse directions. The longitudinal coordinate information is
necessary to measure the decay vertex distance, while the transverse information allows
a better separation between secondary vertices coming from decay cascades.

More precisely, the design of the SVT was carried out according to some important

guidelines:

e The number of impact points of a single charged particle has to be greater than 3
to make a stand-alone tracking possible, and to provide an independent momentum

measure.
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Figure 4.3: SVT schematic view: longitudinal section.

The first three layers are placed as close as possible to the impact point to achieve

the best resolution on the z position of the B meson decay vertices.

The two outer layers are close to each other, but comparatively far from the inner

layers, to allow a good measurement of the track angles.

The SVT must withstand 2 MRad of ionizing radiation: the expected radiation dose
is 1 Rad/day in the horizontal plane immediately outside the beam pipe and 0.1
Rad/day on average.

Since the vertex detector is inaccessible during normal detector operations, it has

to be reliable and robust.

These guidelines have led to the choice of a SVT made of five layers of double-sided
silicon strip sensors. The spatial resolution, for perpendicular tracks must be 10 — 15 um
in the three inner layers and about 40 pum in the two outer layers. The three inner lay-
ers perform the impact parameter measurement, while the outer layers are necessary for
pattern recognition and low p; tracking. The silicon detectors are double-sided (contain
active strips on both sides) because this technology reduces the thickness of the materials
the particles have to cross, thus reducing the energy loss and multiple scattering probabil-
ity compared to single-sided detectors. The sensors are organized in modules (Fig. 4.3).
The SVT five layers contain 340 silicon strip detectors with AC-coupled silicon strips.

Each detector is 300 pm-thick but sides range from 41 mm to 71 mm and there are

6 different detector types. Each of the three inner layers has a hexagonal transverse
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Figure 4.4: Cross-sectional view of the SVT in a plane perpendicular to the beam axis.

cross-section and it is made up of 6 detector modules, arrayed azimuthally around the
beam pipe, while the outer two layers consist of 16 and 18 detector modules, respectively.
The inner detector modules are barrel-style structures, while the outer detector modules
employ the novel arch structure in which the detectors are electrically connected across
an angle. This arch design was chosen to minimize the amount of silicon required to cover
the solid angle while increasing the solid angle for particles near the edges of acceptance:
having incidence angles on the detector closer to 90 degrees at small dip angles insures
a better resolution on impact points. One of the main features of the SVT design is the
mounting of the readout electronics entirely outside the active detector volume.

The strips on the two sides of the rectangular detectors in the barrel regions are
oriented parallel (¢ strips) or perpendicular (z strips) to the beam line: in other words,
the inner sides of the detectors have strips oriented perpendicular to the beam direction
to measure the z coordinate (z-size), whereas the outer sides, with longitudinal strips,
allow the ¢-coordinate measurement (¢-side). In the forward and backward regions of the
two outer layers, the angle between the strips on the two sides of the trapezoidal detectors
is approximately 90° and the ¢ strips are tapered.

The inner modules are tilted in ¢ by 5°, allowing an overlap region between adjacent
modules: this provide full azimuthal coverage and is convenient for alignment. The outer

modules are not tilted, but are divided into sub-layers and placed at slightly different
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radii (see Fig. 4.4).

The total silicon area in the SVT is 0.94m? and the number of readout channels is
about 150 000. The geometrical acceptance of SVT is 90% of the solid angle in the c.m.
system and typically 80% are used in charged particle tracking.

The z-side strips are connected to the read-out electronics with flexible Upilex fanout
circuits glued to the inner faces of half-modules: as a matter of fact, each module is
divided into two electrically separated forward and backward half-modules. The fanout
circuits consist of conductive traces on a thin flexible insulator (copper traces on Kapton):
the traces are wire-bonded to the end of the strips.

In the two outer layers, in each module the number of z strips exceeds the number
of read-out channels, so that a fraction of the strips is “ganged”, i.e., two strips are
connected to the same read-out channel. The “ganging” is performed by the fanout
circuits. The length of a z strip is about 50 um (case of no ganging) or 100 um (case of two
strip connected): the ganging introduces an ambiguity on the z coordinate measurement,
which must be resolved by the pattern recognition algorithms. The ¢ strips are daisy-
chained between detectors, resulting in a total strip length of up to 26 cm. Also, for the
¢-side, a short fanout extension is needed to connect the ends of the strips to the read-out

electronics.

1st 2nd 3rd 4th oth

layer | layer | layer | layer layer
radius (mm) 32 40 54 | 91-127 | 114-144
modules/layer 6 6 6 16 18
wafers/module 4 4 6 7 8
read-out pitch (um)
0] 50-100 | 55-110 | 55-110 | 100 100
z 100 100 100 210 210

Table 4.3: Parameters of the SVT layout: these characteristics are shown for each layer.

The signals from the read-out strips are processed using a new technique, bringing
in several advantages. After amplification and shaping, the signals are compared to a
preset threshold and the time they exceed this threshold (time over threshold, or ToT) is
measured. This time interval is related to the charge induced in the strip by the charged

particle crossing it. Unlike the traditional peak-amplitude measurement in the shaper
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output, the ToT has the advantage of an approximately logarithmic relation of the time
interval to the charge signal. This compresses the active dynamic range of the signal,
ensuring a good sensitivity in the lower range. When a particle crosses a silicon detector
a cluster of adjoining strips producing a signal is formed. The good signal resolution in
the lower range ensures a good determination of the tails of the cluster thus improving
the resolution on the impact point measurement.

The electronic noise measured is found to vary between 700 and 1500 electrons ENC
(equivalent noise charge), depending on the layer and the readout view: this can be
compared to the typical energy deposition for a minimum ionizing particle at normal
incidence, which is equivalent to ~ 24000 electrons.

During normal running conditions, the average occupancy of the SVT in a time window
of 1 us is about 2% for the inner layers, where it is dominated by machine backgrounds,
and less than 1% for the outer layers, where noise hits dominate.

The cluster reconstruction is based on a cluster finding algorithm: first the charge
pulse height of a single pulse is calculated from the ToT value and clusters are formed
grouping adjacent strips with consistent times. The position x of a cluster formed by n
strips is evaluated with an algorithm called “head-to-tail” algorithm:

_ (T1 + ) " p(Qn — Q1)

where x; and (); are the position and the collected charge of i-th strip and p is the read-out

(4.1)

pitch. This formula always gives a cluster position within p/2 of the geometrical center
of the cluster. The cluster pulse height is simply the sum of the strip charges, while the
cluster time is the average of the signal times.

The SVT efficiency can be calculated for each half-module by comparing the number
of associated hits to the number of tracks crossing the active area of the half-module.
Excluding defective readout sections (2 over 208), the combined hardware and software
efficiency is 97%.

The spatial resolution of SVT hits is calculated by measuring the distance (in the plane
of the sensor) between the track trajectory and the hit, using high-momentum tracks in
two prong events: the uncertainty due to the track trajectory is subtracted from the
width of the residual distribution to obtain the hit resolution. The track hit residuals are
defined as the distance between track and hit, projected onto the wafer plane and along

either the ¢ or z direction. The width of this residual distribution is then the SVT hit
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Figure 4.5: SVT hit resolution in the z and ¢ coordinate in microns, plotted as functions
of the track incident angle in degrees.

resolution. Fig. 4.5 shows the SVT hit resolution for z and ¢ side hits as a function of
the track incident angle: the measured resolutions are in very good agreement with the
Monte Carlo expected ones. Over the whole SVT, resolutions are raging from 10 — 15 um
(inner layers) to 30 — 40 um (outer layers) for normal tracks.

For low-momentum tracks (p; < 120 MeV/c), the SVT provides the only particle
identification information. The measure of the ToT value enables to obtain the pulse
height and hence the ionization dF/dx: the value of ToT are converted to pulse height
using a look-up table computed from the pulse shapes. The double-sided sensors provide
up to ten measurements of dE /dx per track: with signals from at least four sensors, a 60%
truncated mean dF/dx is calculated. For MIPs, the resolution on the truncated mean
dE/dz is approximately 14%: a 20 separation between kaons and pions can be achieved

up to momentum of 500 MeV /c and between kaons and protons beyond 1 GeV/c.

4.3.2 The drift chamber: DCH

The drift chamber is the second part of BABAR tracking system. Its principal purpose is
the efficient detection of charged particles and the measurement of their momenta and

angles with high precision. The DCH complements the measurements of the impact pa-
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Figure 4.6: Side view of the BABAR drift chamber (the dimensions are in mm) and
isochrones (i.e. contours of equal drift time of ions) in cells of layer 3 and 4 of an axial
super-layer. The isochrones are spaced by 100 ns.

rameter and the directions of charged tracks provided by the SVT near the impact point
(IP). At lower momenta, the DCH measurements dominate the errors on the extrapo-
lation of charged tracks to the DIRC, EMC and IFR. The reconstruction of decay and
interaction vertices outside of the SVT volume, for instance the K2 decays, relies only on
the DCH. For these reasons, the chamber should provide maximal solid angle coverage,
good measurement of the transverse momenta and positions but also of the longitudi-
nal positions of tracks with a resolution of ~ 1 mm, efficient reconstruction of tracks at
momenta as low as 100 MeV/c and it has to minimally degrade the performance of the
calorimeter and particle identification devices (the most external detectors). The DCH
also needs to supply information for the charged particle trigger. For low momentum par-
ticles, the DCH is required to provide particle identification by measuring the ionization
loss (dE/dx). A resolution of about 7% allows m/K separation up to 700 MeV/c. This
particle identification (PID) measurement is complementary to that of the DIRC in the
barrel region, while in the extreme backward and forward region, the DCH is the only
device providing some discrimination of particles of different mass. The DCH should also
be able to operate in presence of large beam-generated backgrounds having expected rates
of about 5 kHz/cell in the innermost layers.

To meet the above requirements, the DCH is a 280 c¢m-long cylinder (see left plot in
Fig. 4.6), with an inner radius of 23.6 cm and an outer radius of 80.9 cm. It is bounded

by the support tube at its inner radius and the particle identification device at its outer
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radius. The flat end-plates are made of aluminum. Since the BABAR events will be boosted
in the forward direction, the design of the detector is optimized to reduce the material
in the forward end. The forward end-plate is made thinner (12mm) in the acceptance
region of the detector compared to the rear end-plate (24 mm), and all the electronics is
mounted on the rear end-plate. The device is asymmetrically located with respect to the
IP: the forward length of 174.9 cm is chosen so that particles emitted at polar angles of
17.2° traverse at least half of the layers of the chamber before exiting through the front
end-plate. In the backward direction, the length of 101.5 ¢cm means that particles with
polar angles down to 152.6° traverse at least half of the layers.

The inner cylinder is made of 1 mm beryllium and the outer cylinder consists of two
layers of carbon fiber glued on a Nomex core: the inner cylindrical wall is kept thin
to facilitate the matching of SVT and DCH tracks, to improve the track resolution for
high momentum tracks and to minimize the background from photon conversions and
interactions. Material in the outer wall and in the forward direction is also minimized in
order not to degrade the performance of the DIRC and the EMC.

The region between the two cylinders is filled up by a gas mixture consisting of Helium-
isobutane (80% : 20%): the chosen mixture has a radiation length that is five times larger
than commonly used argon-based gases. 40 layers of wires fill the DCH volume and form
7104 hexagonal cells with typical dimensions of 1.2x1.9 em? along the radial and azimuthal
directions, respectively (see right plot in Fig. 4.6). The hexagonal cell configuration has
been chosen because approximate circular symmetry can be achieved over a large portion
of the cell. Each cell consist of one sense wire surrounded by six field wires: the sense
wires are 20 um gold-plated tungsten-rhenium, the field wires are 120 ym and 80 um gold-
plated aluminum. By using the low-mass aluminum field wires and the helium-based gas
mixture, the multiple scattering inside the DCH is reduced to a minimum, representing
less than 0.2%X, of material. The total thickness of the DCH at normal incidence is
1.08%X.

The drift cells are arranged in 10 super-layers of 4 cylindrical layers each: the super-
layers contain wires oriented in the same direction: to measure the z coordinate, axial
wire super-layers and super-layers with slightly rotated wires (stereo) are alternated. In
the stereo super-layers a single wire corresponds to different ¢ angles and the z coordinate
is determined by comparing the ¢ measurements from axial wires and the measurements

from rotated wires. The stereo angles vary between £45mrad and £76mrad.
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Figure 4.7: DCH position resolution as a function of the drift chamber in layer 18, for
tracks on the left and right side of the sense wire. The data are averaged over all cells in
the layer.

While the field wires are at ground potential, a positive high voltage is applied to the
sense wires: an avalanche gain of approximately 5 x 10 is obtained at a typical operating
voltage of 1960 V' and a 80:20 helium:isobutane gas mixture.

In each cell, the track reconstruction is obtained by the electron time of flight: the
precise relation between the measured drift time and drift distance is determined from
sample of eTe” and ptu~ events. For each signal, the drift distance is estimated by
computing the distance of closest approach between the track and the wire. To avoid
bias, the fit does not include the hit of the wire under consideration. The estimated drift
distances and the measured drift times are averaged over all wires in a layer.

The DCH expected position resolution is lower than 100 ym in the transverse plane,
while it is about 1mm in the z direction. The minimum reconstruction and momentum
measure threshold is about 100 MeV/c and it is limited by the DCH inner radius. The
design resolution on the single hit is about 140 um while the achieved weighted average
resolution is about 125 um. Fig. 4.7 shows the position resolution as a function of the
drift distance, separately for the left and the right side of the sense wire. The resolution
is taken from Gaussian fits to the distributions of residuals obtained from unbiased track

fits. The results are based on multi-hadron events for data averaged over all cells in layer
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18.

The specific energy loss (dE/dx) for charged particles through the DCH is derived from
the measurement of the total charge collected in each drift cell. The specific energy loss
per track is computed as a truncated mean from the lowest 80% of the individual dE/dx
measurements. Various corrections are applied to remove sources of bias: these corrections
include changes in gas pressure and temperature (£9% in dFE/dx), differences in cell
geometry and charge collection (+£8%), signal saturation due to space charge buildup
(£11%), non-linearities in the most probable energy loss at large dip angles (£2.5%) and

variation of cell charge collection as a function of the entrance angle (£2.5%).

4.4 Cerenkov Light Detector: DIRC

The particle identification system is crucial for BABAR since the C'P violation analysis
requires the ability to fully reconstruct one of the B meson and to tag the flavor of the
other B decay: the momenta of the kaons used for flavor tagging extend up to about 2
GeV/c with most of them below 1 GeV/c. On the other hand, pions and kaons from the

*t7~ and BY — K*7~ must be well separated: they have

rare two-body decays B® — 7
momenta between 1.7 and 4.2 GeV/c with a strong momentum-polar angle correlation
of the tracks (higher momenta occur at more forward angles because of the c.m. system
boost).

The particle identification of charged kaons is a crucial point of most of the measure-

ments presented in this work.

So the particle identification system should be:

e thin and uniform in term of radiation lengths to minimize degradation of the

calorimeter energy resolution
e small in the radial dimension to reduce the volume (cost) of the calorimeter
e with fast signal response
e able to tolerate high background

DIRC stands for Detection of Internally Reflected Cerenkov light and it refers to a
new kind of ring-imaging Cerenkov detector which meets the above requirements. The

particle identification in the DIRC is based on the Clerenkov radiation produced by charged
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Figure 4.8: Mechanical elements of the DIRC and schematic view of bars assembled into
a mechanical and optical sector.

particles crossing a material with a speed higher than light speed in that material. The

angular opening of the Cerenkov radiation cone depends on the particle speed:

1
0, = — 4.2
cos e (4.2)

where 6, is the Cerenkov cone opening angle, n is the refractive index of the material and
[ is the particle velocity over c. The principle of the detection is based on the fact that
the magnitudes of angles are maintained upon reflection from a flat surface.

Since particles are produced mainly forward in the detector because of the boost, the
DIRC photon detector is placed at the backward end: the principal components of the
DIRC are shown in Fig. 4.8. The DIRC is placed in the barrel region and consists of 144
long, straight bars arranged in a 12-sided polygonal barrel. The bars are 1.7 em-thick,
3.5 em-wide and 4.90 m-long: they are placed into 12 hermetically sealed containers, called
bar bozes, made of very thin aluminum-hexcel panels. Within a single bar box, 12 bars are
optically isolated by a ~ 150 um air gap enforced by custom shims made from aluminum
foil.

The radiator material used for the bars is synthetic fused silica: the bars serve both
as radiators and as light pipes for the portion of the light trapped in the radiator by total
internal reflection. Synthetic silica has been chosen because of its resistance to ionizing
radiation, its long attenuation length, its large index of refraction, its low chromatic
dispersion within its wavelength acceptance.

The Cerenkov radiation is produced within these bars and is brought, through succes-
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Figure 4.9: Schematics of the DIRC fused silica radiator bar and imaging region. Not
shown is a 6 mrad angle on the bottom surface of the wedge.

sive total internal reflections, in the backward direction outside the tracking and magnetic
volumes: only the backward end of the bars is instrumented. A mirror placed at the other
end on each bar reflects forward-going photons to the instrumented end. The Cerenkov
angle at which a photon was produced is preserved in the propagation, modulo some
discrete ambiguities (the forward-backward ambiguity can be resolved by the photon
arrival-time measurement, for example). The DIRC efficiency grows together with the
particle incidence angle because more light is produced and a larger fraction of this light
is totally reflected. To maximize the total reflection, the material must have a refractive
index (fused silica index is n = 1.473) higher than the surrounding environment (the
DIRC is surrounded by air with index n = 1.0002).

Once photons arrive at the instrumented end, most of them emerge into a water-
filled expansion region (see Fig. 4.9), called the Standoff Box: the purified water, whose
refractive index matches reasonably well that of the bars (ng,o = 1.346), is used to
minimize the total internal reflection at the bar-water interface.

The standoff box is made of stainless steel and consists of a cone, cylinder and 12
sectors of PMTs: it contains about 6000 liters of purified water. Each of the 12 PMTs
sectors contains 896 PMTs in a close-packed array inside the water volume: the PMTs are

linear focused 2.9 cm diameter photo-multiplier tubes, lying on an approximately toroidal
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Figure 4.10: From di-muon data events, (a) single photon Cerenkov angle resolution.
The distribution is fitted with a double-Gaussian and the width of the narrow Gaussian
is 9.6 mrad. (b) Reconstructed Cerenkov angle for single muons. The difference between
the measured and expected Cerenkov angle is plotted and the curve represents a Gaussian
distribution fit to the data with a width of 2.4 mrad.

surface.

The DIRC occupies only 8 em of radial space, which allows for a relatively large radius
for the drift chamber while keeping the volume of the Csl Calorimeter reasonably low: it
corresponds to about 17% X, at normal incidence. The angular coverage is the 94% of
the ¢ azimuthal angle and the 83% of cosfcny.

Cerenkov photons are detected in the visible and near-UV range by the PMT array.
A small piece of fused silica with a trapezoidal profile glued at the back end of each bar
allows for significant reduction in the area requiring instrumentation because it folds one
half of the image onto the other half. The PMTs are operated directly in water and are
equipped with light concentrators: the photo-multiplier tubes are about 1.2 m away from
the end of the bars. This distance from the bar end to the PMTs, together with the
size of the bars and PMTs, gives a geometric contribution to the single photon Cerenkov
angle resolution of about 7 mrad. This is a bit larger than the resolution contribution
from Cerenkov light production (mostly a 5.4 mrad chromatic term) and transmission
dispersions. The overall single photon resolution expected is about 9 mrad.

The image from the Cerenkov photons on the sensitive part of the detector is a cone

cross-section whose opening angle is the Cerenkov angle modulo the refraction effects on
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the fused silica-water surface. In the most general case, the image consists of two cone
cross-sections out of phase one from the other by a value related to an angle which is
twice the particle incidence angle. In order to associate the photon signals with a track
traversing a bar, the vector pointing from the center of the bar end to the center of each
PMT is taken as a measure of the photon propagation angles a,, o, and a,. Since the
track position and angles are known from the tracking system, the three o angles can be
used to determine the two Cerenkov angles 6 and ¢¢. In addition, the arrival time of
the signal provides an independent measurement of the propagation of the photon and
can be related to the propagation angles a. This over-constraint on the angles and the
signal timing are useful in dealing with ambiguities in the signal association and high
background rates.

The expected number of photo-electrons (N,.) is ~ 28 for a § = 1 particle entering
normal to the surface at the center of a bar and increases by over a factor of two in the
forward and backward directions.

The time distribution of real Cerenkov photons from a single event is of the order of
50ns wide and during normal data taking they are accompanied by hundreds of random
photons in a flat background distribution within the trigger acceptance window. The
Cerenkov angle has to be determined in an ambiguity that can be up to 16-fold: the goal
of the reconstruction program is to associate the correct track with the candidate PMT
signal with the requirement that the transit time of the photon from its creation in the

bar to its detection at the PMT be consistent with the measurement error of about 1.5 ns.

4.5 Electromagnetic calorimeter: EMC

The understanding of C'P violation in the B meson system requires the reconstruction
of final state containing a direct 7° or that can be reconstructed through a decay chain
containing one or more daughter 7’. The electromagnetic calorimeter is designed to
measure electromagnetic showers with excellent efficiency and energy and angular reso-
lution over the energy range from 20 MeV to 9 GeV. This capability should allow the
detection of photons from 7 and 1 decays as well as from electromagnetic and radiative
processes. By identifying electrons, the EMC contributes to the flavor tagging of neutral
B mesons via semi-leptonic decays. The upper bound of the energy range is given by

the need to measure QED processes like eTe™ — ete (v) and ete™ — v~ for calibration
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Figure 4.11: The electromagnetic calorimeter layout in a longitudinal cross section and
a schematic view of the wrapped CsI(Tl) crystal with the front-end readout package
mounted on the rear face (not to scale).

and luminosity determination. The lower bound is set by the need for highly efficient
reconstruction of B-meson decays containing multiple 7% and 1%. The measurement of
very rare decays containing s in the final state (for example, B — 7%7%) puts the most
stringent requirements on energy resolution, expected to be of the order of 1 —2%. Below
2 GeV energy, the 7° mass resolution is dominated by the energy resolution, while at
higher energies, the angular resolution becomes dominant and it is required to be of the
order of few mrad. The EMC is also used for electron identification and for completing
the IFR output on p and K? identification. It also has to operate in a 1.57T magnetic
field.

The EMC has been chosen to be composed of a finely segmented array of thallium-
doped cesium iodide (CsI(Tl)) crystals. The crystals are read out with silicon photo-
diodes that are matched to the spectrum of scintillation light. The energy resolution of
a homogeneous crystal calorimeter can be described empirically in terms of a sum of two
terms added in quadrature:

OF a

S — (4.3)

E T i/EG)
where E and op refer to the energy of a photon and its rms error, measured in GeV.
The energy dependent term a(~ 2%) arises basically from the fluctuations in photon
statistics, but also from the electronic noise of the photon detector and electronics and
from the beam-generated background that leads to large numbers of additional photons.
This first term dominates at low energy, while the constant term b(~ 1.8%) is dominant

at higher energies (> 1 GeV). It derives from non-uniformity in light collection, leakage
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or absorption in the material in front of the crystals and uncertainties in the calibration.
The angular resolution is determined by the transverse crystal size and the distance
from the interaction point: it can be empirically parameterized as a sum of an energy

dependent and a constant term

ngad,:m%—d (4.4)
where E is measured in GeV and with ¢ ~ 4 mrad and d ~ 0 mrad.

In CsI(T1), the intrinsic efficiency for the detection of photons is close to 100% down
to a few MeV, but the minimum measurable energy in colliding beam data is about 20
MeV for the EMC: this limit is determined by beam and event-related background and
the amount of material in front of the calorimeter. Because of the sensitivity of the 7°
efficiency to the minimum detectable photon energy, it is extremely important to keep
the amount of material in front of the EMC to the lowest possible level.

Thallium-doped Csl has high light yield and small Moliere radius in order to allow
for excellent energy and angular resolution. It is also characterized by a short radiation
length for shower containment at BABAR energies. The transverse size of the crystals is
chosen to be comparable to the Moliere radius achieving the required angular resolution
at low energies while limiting the total number of crystals and readout channels.

The BABAR EMC (left plot in Fig. 4.11) consists of a cylindrical barrel and a conical
forward end-cap: it has a full angle coverage in azimuth while in polar angle it extends from
15.8° to 141.8° corresponding to a solid angle coverage of 90% in the CM frame. Radially
the barrel is located outside the particle ID system and within the magnet cryostat:
the barrel has an inner radius of 92 cm and an outer radius of 137.5cm and it’s located
asymmetrically about the interaction point, extending 112.7 em in the backward direction
and 180.1 c¢m in the forward direction. The barrel contains 5760 crystals arranged in 48
rings with 120 identical crystals each: the end-cap holds 820 crystals arranged in eight
rings, adding up to a total of 6580 crystals. They are truncated-pyramid CsI(T1) crystals
(right plot in Fig. 4.11): they are tapered along their length with trapezoidal cross-sections
with typical transverse dimensions of 4.7 x 4.7 cm? at the front face, flaring out toward the
back to about 6.1 -6.1cm?. All crystals in the backward half of the barrel have a length
of 29.6 cm: toward the forward end of the barrel, crystal lengths increase up to 32.4 cm
in order to limit the effects of shower leakage from increasingly higher energy particles.

All end-cap crystals are of 32.4cm length. The barrel and end-cap have total crystal



90

The BABAR Detector

0.04-

T

| ------MonteCarlo

Lo © Sy
©  F = Mmoo
® 0ok * Bhabhas 5 SO O 0 W 15 RO W
[ v Xe>dvy
0053 * radioakt. Source

0.03fT— SN R
" 6(E)E=06,/E" ® 0,
002l 6, =(2.32+0.03403)% | LfH
o01F| 0, = (185 +0.07 +0.1)%
ofil i L

107

-1

10

1 EY/GeV

Figure 4.12: EMC resolution as a function of the energy.

volumes of 5.2m3 and 0.7 m?, respectively. The CsI(T1) scintillation light spectrum has a
peak emission at 560 nm: two independent photodiodes collect this scintillation light from
each crystal. The readout package consists of two silicon PIN diodes, closely coupled to
the crystal and to two low-noise, charge-sensitive preamplifiers, all enclosed in a metallic
housing.

A typical electromagnetic shower spreads over many adjacent crystals, forming a clus-
ter of energy deposit: pattern recognition algorithms have been developed to identify
these clusters and to discriminate single clusters with one energy maximum from merged
clusters with more than one local energy maximum, referred to as bumps. The algorithms
also determine whether a bump is generated by a charged or a neutral particle. Clusters
are required to contain at least one seed crystal with an energy above 10 MeV: surround-
ing crystals are considered as part of the cluster if their energy exceeds a threshold of 1
MeV or if they are contiguous neighbors of a crystal with at least 3 MeV signal. The level
of these thresholds depends on the current level of electronic noise and beam-generated
background.

A bump is associated with a charged particle by projecting a track to the inner face
of the calorimeter: the distance between the track impact point and the bump centroid is

calculated and if it is consistent with the angle and momentum of the track, the bump is
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associated with this charged particle. Otherwise it is assumed to originate from a neutral
particle.

On average, 15.8 clusters are detected per hadronic event: 10.2 are not associated to
any charged particle. Currently, the beam-induced background contributes on average
with 1.4 neutral clusters with energy above 20 MeV.

At low energy, the energy resolution of the EMC is measured directly with a 6.13
MeV radioactive photon source (a neutron-activated fluorocarbon fluid) yielding op/E =
5.0 £ 0.8%. At high energy, the resolution is derived from Bhabha scattering where the
energy of the detected shower can be predicted from the polar angle of the electrons and
positrons. The measured resolution is o /E = 1.94£0.1% at 7.5 GeV. Fig. 4.12 shows the
energy resolution on data compared with expectations from Monte Carlo. From a fit to
the experimental results to eq. 4.3, a = 2.32 +0.30% and b = 1.85 & 0.12% are obtained.
The constant term comes out to be greater than expected: this is mainly caused by a
cross talk effect, still not corrected, in the front-end electronics.

The measurement of the angular resolution is based on Bhabha events and ranges
between 12 mrad and 3 mrad going from low to high energies. A fit to eq. 4.4 results in

¢ = (3.87£0.07) mrad and d = (0.00 £ 0.04) mrad.

4.6 Instrumented Flux Return: IFR

IFR (Instrumented Flux Return) detector is dedicated to muon identification and neu-
tral hadrons detection (mainly K?) in a wide range of momentum and angles.

The IFR, as all the other BABAR subsystems, has an asymmetric structure with a
polar angle coverage that is 17° < 6,4, < 150°. The IFR (Fig. 4.13) is made of 19 layers
of Resistive Plate Chambers (RPC) in the barrel region and 18 layers in forward and
backward regions, that are placed inside the iron layers used for the solenoidal magnetic
field return joke. The iron structure is subdivided in three main parts: the barrel one
surrounding the solenoid, made of 6 sextants covering the radial distance between 1.820 m
and 3.045 m with a length of 3.750 m (along the z axis); the forward end-cap and back-
ward end-cap covering the forward (positive z axis) and backward regions. Moreover,
two cylindrical RPC layers have been installed between the calorimeter and the magnet
cryostat in order to reveal particles exiting from the EMC. Those layers should cover the

¢ regions not covered by the barrel. Cylindrical layers are subdivided in four sections,
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Figure 4.13: IFR view;

# di readout # # strip strip len. strip larg. total #
section sectors coor. layer layer /sector (cm) (mm) channel
barrel 6 ) 19 96 350 19.7-32.8 ~ 11k

Z 19 96 190-318 38.5 ~ 11k
end-cap 4 y 18 6x32 124-262 28.3 13,824
X 18 3x64 10-180 38.0 ~ 15k
cyl. 4 ) 1 128 370 16.0 512
4 1 128 211 29.0 512
u 1 128 10-422 29.0 512
\Y% 1 128 10-423 29.0 512

Table 4.4: TFR readout segmentation. Total number of channels is ~ 53k.

each of them covering one fourth of the circumference: each of them has four RPC groups
with orthogonal readout strips. u — v helicoidal strips are placed inside along module’s
diagonals while ¢ and z parallel strips are placed outside. The summary of IFR readout
segmentation is given in Tab. 4.4.

Each end-cap has an hexagonal shape and is vertically subdivided in two halves in
order to allow internal subsystems access, if necessary. Vacuum tube and PEP-II focusing
elements are placed in the middle. Iron plates have a thickness ranging from 2 c¢m, for
the inner ones placed nearest to the interaction region, to 10 ¢m for the outer ones; this

means a total thickness of steel at normal incidence of ~ 65 ¢m (nearly corresponding to
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Figure 4.14: Planar RPC section with HV connection scheme.

~ 4 interaction lengths) in the barrel and ~ 60 ¢m in the end-caps. Nominal distance
between iron layers in the inner barrel region is 3.5 cm while is 3.2 ¢cm everywhere else.
The increased granularity of inner layers with respect to the outer ones is due to the
fact that the largest part of particles detected inside the IFR are interacting in the very
first material layers. Chosen segmentation is also the result of a compromise between the
subsystem cost (proportional to the volume) and the need of a good efficiency for low
momentum (> 700 MeV/c) muon detection, minimizing, at the same time, fraction of
KY’s that are not interacting inside the IFR. Result of this optimization is a not uniform
segmentation with iron plates that have thickness increasing with distance from beam
line. RPC section is shown in Fig. 4.14.

In each barrel sextant layers are kept together by a structure that reduces the coverage
of solid angle with active detectors of ~ 7%. Active coverage of IFR detector is &~ 2000 m?,
for a total RPC modules number that is ~ 900. Signals produced by particles crossing the
gas gap inside the RPCs are collected on both sides of the chamber by using thin strips
(thickness ~ 40 pm) with width of the order of a centimeter. Strips are applied in two
orthogonal directions on insulating planes 200 um thick, in order to have a bi-dimensional
view. In each barrel sextant each gap is hosting a chamber. This consist of a set of 3
RPC modules of rectangular shape. Each module is ~ 125 ¢m long along beams direction
with variable width in order to completely fill the gap. Each chamber is equipped with

96 ¢ — strip placed along z axis that are measuring the ¢ angle inside the barrel and 96
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z — strip orthogonal to beams direction that are measuring z coordinate. z — strips are
subdivided into 3 panels of 32 strips with largeness, function of chamber radial position,
ranging between 1.78 and 3.37 ¢m. This projective geometry allows a constant number of
strips for all the various layers without decreasing detector resolution (each strip covers
the same azimuthal angle). The used gas mixture is made of 56.7% Argon, 38.8% Freon-
134a and 4.5% Isobutane. Working voltage for RPCs is ~ 7.5 kV. Iron layers keeping
apart RPC planes are chilled by a water system that keeps the temperature ~ 20°C.

RPC efficiencies have been measured by using cosmics taken on a weekly base. Mean
efficiency during 2000 run has been ~ 78% for the barrel and ~ 87% for the forward
end-cap, less than that one measured in June 1999 (~ 92%). During the Summer 1999
the ambient temperature increased very much reaching about 32° to 38° inside the iron.
During such period the IFR had problems to run the full detector because the dark current
drawn by the chambers exceeded the total current limit provided by the power supply.
All the chambers drawing more than 2004 A were disconnected. In October the chambers
were re-connected but they didn’t recover the full efficiency. The forward end-cap has
been completely reconstructed and installed in the Summer 2002: 5 intermediate RPC
layers were replaced by 2.54 ¢m of brass, 10 cm of steel were added after the last RPC
layer, an RPC (layer 19) was added in front of the forward end-cap, an RPC belt was
added in the barrel-end-cap overlap region. Barrel efficiencies are still decreasing and are
at ~ 40% level while in the new forward end-cap, they are greater than 90%.

Muons are identified by measuring the number of traversed interaction lengths in the
entire detector and comparing it with the number of expected interaction lengths for a
muon of a given momentum. Moreover, the projected intersections of a track with the
RPC planes are computed and, for each readout plane, all strips clusters detected within
a predefined distance from the predicted intersection are associated with the track: the
average number and the r.m.s. of the distribution of RPC strips per layer gives additional
p/m discriminating power. It is expected in fact the average number of strips per layer
to be larger for pions producing an hadronic interaction than for muons. Other variables
exploiting clusters distribution shapes are constructed. Selection criteria based on all
these variables are applied to select muons. The performance of the muon selection has
been tested on samples of kinematically identified muons from ppuee and ppy final states
and pions from three-prong 7 decays and Kg — 77~ decays.

At the end of the summer 2004 RPC from Top and Bottom Barrel sextant have been
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substituted with limited streamer tube (LST). Data recording Run-5 has been started
only in the second half of April 2005. In these days (summer 2006) all the remaining
sextants of the barrel are going to be replaced with LST’s.

The efficiency of the LST is monitored daily using pu pairs from colliding beams and
monthly from cosmic rays. The calculated efficiency results to be constant around 90%.
The geometric efficiency is 92.5%. The fluctuation of the efficiency are mostly related to
the fluctuation on the number of silent channels, but no loss of efficiency for each single
LST is detected.

Fig. 4.15 shows the efficiency map for the layer 10 of the IFR barrel, comparing the
bottom and top sextants with LST and remaining RPC’s which are going to be replaced
during Summer 2006.

|

Barrel Gap 12

-100

\\\l\\\\z\\\\z\\\\z\\\\z\\\\z\\\\z\\\\l\

Figure 4.15: Efficiency map for layer 10 of IFR barrel for a run 62018 (middle of Run5).
Left and right columns represent RPC-instrumented sextants, central column represent
LST-instrumented layers (top and bottom layers). The remaining RPC’s in the IFR barrel
are going to be replaced with LST’s in Summer 2006.

For the 7 /p discrimination the LST appear to work better than RPC ever did.

Since the forward RPC’s began to show degradation of efficiency in the inner regions
closest to the beam axis, where the machine background is higher, half of the central RPC
chambers for layer one and three have been switched to avalanche mode. This had as

effect an expected higher strip occupancy, but led to the full recovery of efficiency in the
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inner radii of the chambers. This effect is shown in Fig. 4.16
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Figure 4.16: Efficiency map for the first layer of forward endcap IFR. (a) Run 58700
(end of Run4) with all RPC in streamer mode; (b) Run 62018 (middle of Run5) with the
central RPC chamber (z > 0 cm and |y| < 100 ¢cm) in avalanche mode. The two runs
have been chosen having approximately the same luminosity. (b) shows a full recovery of
the efficiency at small radii which was degraded with the chamber in streamer mode.

This is mostly important for the future run periods, where the plan is to raise signif-

icantly the luminosity, with a consequent increase in the beam backgrounds. Due to the

good results of the test on these two layers, during this summer the central RPC chambers

of the forward endcap will be all converted to avalanche regime.



Chapter 5

Charged and Neutral Kaon
Reconstruction

All the measurements we will present in this work involve neutral or charged kaons. We
will describe the selection of charged tracks and kaon/pion particle identification (PID)
through the informations coming from the inner tracking system and, above all, the DIRC
0. measurements.

We then will describe the quite standard reconstruction of KY decaying in 777~ or
707Y even if some of the details may differ in B — KTK~K? or in B® — K?K'K?
decays, because of different signal to background ratios.

Finally, an original work on the K? identification, using the informations on both the
EMC and the IFR detectors, which made possible the measurement of the CP asymmetry
in B® — K*K~KY decays, is presented.

5.1 Track Reconstruction

The reconstruction of charged particle is based on the SVT and the DCH detectors.
Charged particle tracking has been studied with large samples of cosmic ray muons, ete™,
wp~ and 777 events, as well as multi-hadrons.

Charged tracks are defined by five parameters (dy, ¢, w, 2o, tan \) and their associated
error matrix. These parameters are measured at the point of closest approach to the
z-axis; dy and zy are the distances of this point from the origin of the coordinate system
in the x—y plane and along the z-axis, respectively. The angle ¢ is the azimuth of the
track, A the dip angle relative to the transverse plane, and w is the curvature. dy and w

are signed variables; their sign depends on the charge of the track.
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Figure 5.1: Track reconstruction efficiency in the DCH at operating voltages of 1960V
and 1900V as a function of transverse momentum (left plot) and of polar angle (right
plot). The efficiency is measured in multi-hadron events.

The track finding and the fitting procedures make use of Kalman filter algorithm [33] [53]
that takes into account the detailed distribution of material in the detector and the full
map of the magnetic field. First of all, tracks are reconstructed with DCH hits through
a stand-alone DCH algorithm, the resulting tracks are then extrapolated into the SVT
and SVT track segments are added and a Kalman fit is performed to the full set of DCH
and SVT hits. Any remaining SVT are passed to the SVT stand-alone track finding algo-
rithms. Finally, an attempt is made to use in the Kalman filter tracks that are only found
by one of the two tracking systems and thus recover tracks scattered in the material of
the support tube.

The efficiency for track reconstruction in the DCH has been measured as a function of
transverse momentum, polar and azimuthal angles in multi-track events. These measure-
ment rely on specific final states and exploit the fact that the track reconstruction can be
performed independently in the SVT and the DCH. The absolute DCH tracking efficiency
is determined as the ratio of the number of reconstructed DCH tracks to the number of
tracks detected in the SVT with the requirement that they fall within the acceptance of
the DCH. Left plot in Fig. 5.1 shows the efficiency in the DCH as a function of transverse
momentum in multi-hadron events.

At design voltage of 1960 V, the efficiency averages 98+1% per track above 200 MeV /c:
the data recorded at 1900 V' show a reduction in efficiency by about 5% for tracks almost
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Figure 5.2: Left: Monte Carlo studies of low momentum tracks in the SVT on D** —
D7+ events. (a) comparison with data in BB events and (b) efficiency for slow pion
detection derived from simulated events. Right: resolution in the parameters dy and z
for tracks in multi-hadron events as a function of the transverse momentum.

at normal incidence, indicating that the cells are not fully efficient at this voltage (see
right plot in Fig. 5.1).

The stand-alone SVT tracking algorithms have a high efficiency for tracks with low
transverse momentum: to estimate the tracking efficiency for these low momentum tracks,
a detailed Monte Carlo study was performed. The pion spectrum was derived from simu-
lation of the inclusive D* production in BB events and Monte Carlo events were selected
in the same way as the data: since the agreement with Monte Carlo is very good, the
detection efficiency has been derived from Monte Carlo simulation. The SVT extends
the capability of the charge particle reconstruction down to transverse momenta of ~ 50
MeV /e (see left plot in Fig. 5.2).

The resolution in the five track parameters is monitored using ete™ and pu*p~ pair
events: the resolution is derived from the difference of the measured parameters for the
upper and lower halves of the cosmic ray tracks traversing the DCH and the SVT. On this
sample with transverse momenta above 3 GeV /¢, the resolution for single tracks is 23 um
in dy and 29 pm in zy. To study the dependence of resolution from transverse momentum,
a sample of multi-hadron events is used: the resolution is determined from the width of

the distribution of the difference between the measured parameters (dy and z) and the
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coordinates of the vertex reconstructed from the remaining tracks in the event: right plot
in Fig. 5.2 shows the dependence of the resolution in dy and zy as a function of p;. The
measured resolutions are about 25 um in dy and 40 um in zy for p; of 3 GeV/e: these
values are in good agreement with the Monte Carlo studies and in reasonable agreement
also with the results from cosmic rays.

Besides the criteria described above the tracks selected for this analysis are requested

to satisfy additional requests:

e A cut on the distance of closest approach to the beam spot in the x — y plane
(|dsy| < 1.5 ¢m) and along the z axis (|d,| < 10 ¢m) is applied. This reduces fake
tracks and background tracks not originating from the vicinity of the interaction
point. This cut is not applied to the tracks coming from the Kg decay since the Kg

decay vertex is distant from the interaction point.

e For tracks with p; > 0.2 GeV/c at least one DCH hit is required. This cut is not
used for low momentum tracks to retain slow pions (for instance the ones produced

in the D* — DY decays).

e tracks momentum must satisfy pi, < 10 GeV/e (where pygp, is the laboratory mo-
mentum of the track) is applied. This removes tracks not compatible with the beam

energies.

e Tracks are required to be within the polar angle acceptance of the detector: 0.410 <

010 < 2.54 rad. This ensures a well-understood tracking efficiency.

e Tracks with transverse momentum p; < 0.18 GeV/c do not reach the EMC and
therefore they will spiral inside the drift chamber (“loopers”). The tracking algo-
rithms of BABAR will not combine the different fragments of these tracks into a single
track. Therefore dedicated cuts have been developed to reject track fragments com-
patible with originating from a looper based on their distance from the beam spot.
In order to identify looper candidates, the minimal difference in p,, ¢ and 6 to all
other tracks in the event is determined. Tracks passing selection criteria (see Tab.
5.1), different for same-sign and opposite-sign track pairs, are flagged as loopers and

only the track fragment with |d.| closest to the beam spot is retained.

These criteria remove roughly 13% of all low-momentum tracks in the central part
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of the detector. On average, they lower the mean charged multiplicity per B meson

by less than 1%.

e If two tracks are very closely aligned to each other, one of the two is called “ghost”.
These cases arise when the tracking algorithms splits the DCH hits in two track
fragments. If two tracks are very close in phase space (as defined in Tab. 5.1), only
the track with the largest number of DCH hits is retained. This ensures that the

fragment with the better momentum measurement is kept in the analysis.

Select tracks with Selection criteria
distance in x — y plane |dyy| < 1.5 cm
distance in z axis |d.| <10 em
minimum number of DCH hits Npcug > 0if p; > 0.2 GeV/e
maximum momentum Db < 10 GeV /¢
geometrical acceptance 0.410 < 6y, < 2.54 rad
Reject tracks if Ap; = 100 MeV/c to other tracks and
loopers (p; < 0.18 GeV/c) Same sign: |A¢| < 220 & |Af| < 215 mrad
Opposite sign: |[A¢| < 190 & |Af] < 300 mrad
ghosts (p; < 0.35 GeV/c) |Ag| < 220 & |AO| < 215 mrad

Table 5.1: Summary of track selection criteria.

5.1.1 Particle Identification

In order to identify the charged particles, informations from SVT, DCH and DIRC infor-
mations are used. Below the Cerenkov threshold of the DIRC, the DCH dE/dx measure-
ments dominate BABAR’s particle identification of tracks. The DCH algorithms extract
the charge collected per single cell. For each track, a 80% truncated mean of =~ 40 such
measurements, corrected for gas pressure and temperature variations, cell geometry, sig-
nal saturation, non-linearity’s at large dip angles, and cell entrance angle, provides a 7.5%
precision on dE/dx. Fig. 5.3 displays the momentum dependence of this measurement in
a sample consisting of particles with various masses.

The DIRC measurement of the Cerenkov cone angle 6, is BABAR primary tool for
identifying high momentum tracks. The reconstruction algorithm associates PMT signals
with tracks, extracting a 6. measurement when sufficient photons are available for a fit.

Starting from the entrance angle of a track into a particular fused silica bar, the emission



102 Charged and Neutral Kaon Reconstruction

104 |

dE/dx

103 P\

|
1071 1 10

Se53A20 Momentum (GeV/c)

Figure 5.3: Measurement of dE/dx in the DCH as a function of the track momenta. The
data include large samples of beam background triggers as evident from the high rate
of protons. The curves show the Bethe-Bloch predictions derived from selected control
samples of particles of different masses.

angle and arrival time of possible Clerenkov photons is reconstructed from the space-time
coordinates of candidate PMT signals, providing a measurement of each photon 6. and
¢ (the azimuth angle of the Cerenkov photon around the track direction) with a 16-
fold ambiguity. Timing and geometrical considerations typically reduce the number of
ambiguous solutions to 3 and the background by a factor of 40. Finally, a maximum
likelihood fit to the photons associated to each track extracts its 6. and number of signal
(N,) and background photons. The resulting 6. resolution scales as 1/ \/E, where IV,
is around 20 for short track path lengths in the radiator, typically at small polar angles,
and 65 for the longer path lengths at the extreme polar angles. Sec. 8.1.2 discusses a
technique to estimate the 6. resolution, applied to BT — ¢h™ decays, where h™ is 7% or
K. The average 0, resolution is ~ 3 mrad, which provides pion/kaon separation of >2.20
at 4 GeV/e. Fig. 5.4 plots the 6. versus momentum profile and the measured standard
deviations of separation between pions and kaons over the momentum range covered by
tracks of B decays involved in this work.

Eventually, the informations associated to the expected value of the Cerenkov angle,
given by the relation cosf. = 1/6n, where 3 is the Lorentz factor, 3 = p/E and n is the

refraction index for the material crossed by the particle (n=1.473 for the silica bars), the
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Figure 5.4: (a) The 6. of kaons and pions versus the track momenta, and (b) the separation
in standard deviations between pions and kaons as a function of momentum, from the
control sample described in Sec. 8.1.2.

measured Cerenkov angle, and the dE /dz informations from SVT and DCH are combined
in a global likelihood. The ratio of the two considered hypotheses h; and hs is compared
to a given threshold (I, /ln, > 7,) in order to decide if the track is in agreement with
the h; hypothesis more than hy one. One of these selectors, likelihood-based, provides
five different selection criteria, based on the different likelihood threshold. The goodness
of the selection criteria is fixed by the fraction of tracks identified as kaons, out of a pure
sample, and the pion misidentification, i.e. the fraction of tracks identified as kaons, out
of a pure pion sample.

The charged kaon efficiency is compared to the charged pion misidentification in Fig-
ures 5.5 and 5.6 as a function of momentum and polar angle, respectively. In the recon-
struction of the invariant mass of the hadronic system, given the difference in the kaon
momentum spectrum, a charged track is identified as kaon if px > 300 MeV/c.

A requirement based on these selectors is used for all tracks in this work, with the ex-
ception of the primary track in BT — ¢h™ decays, where h* mass hypothesis is estimated
with a likelihood fit which combines the kinematics of the decay and a parameterization

of 6. information.
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Figure 5.5: Charged kaon identification (top) and charged pion fake rate (bottom) for the
loose kaon “likelihood” selector as a function of momentum. Left: efficiency for positive
particles; middle: efficiency for negative particles; right: ratio of the efficiency between
data and Monte Carlo for positive and negative particles.

5.2 K, Reconstruction

In B - KTK~K? and B® — KYK2K? decay analysis, we reconstruct K2 mesons in

both 7t7~ and 7°7° decay modes.

5.2.1 K‘S) — w77~ Reconstruction

In this case K2 mesons are reconstructed from a pair of opposite charged tracks, geomet-

rically constrained to come from a common vertex. The vertex is identified using different

techniques in the different analyses:

1. for B® — KTK~ K2, we used the standard BABAR K? vertexing, which is based
on a geometric constraint on the two tracks: starting from the point of closest
approach in the 3D space, the vertexing algorithm minimizes the 2, expressed in

the position-momentum representation;

2. for B® — KYK?KY because of the fact that no charged tracks originates di-
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Figure 5.6: Charged kaon identification (top) and charged pion fake rate (bottom) for
the loose kaon “likelihood” selector as a function of the polar angle in different bins of
momentum. Left: 0.25 < p < 0.75 GeV/c¢; middle: 0.75 < p < 2.00 GeV/c; right:
2.00 < p < 5.00 GeV/e.

rectly from th B meson, the B vertexing is achieved with the special algorithm
TreeFitter, which fits simultaneously all the B decay tree (see Sec. 2.3) using a
Kalman filter technique [33]. In this way we get the K9 vertex together with the

primary vertex.

We only reject candidates for which the vertexing algorithm has failed. We start from a
common standard selection of these candidates, and then eventually we refine the selection
for the different analyses depending on the specific signal-to-background ratio. We require
for B® - KTK-K2(nt7~) and B' — KYKYKY(r"n~) decays (B® — KYKYK2(r7°)
decays):

L |mpsp- — mIngG| < 12(11) MeV/c?;
2. 2D decay distance: 0.2(0.15) < rgec < 40(60) cm;

3. K — 77~ pointing angle o < 200 mrad;
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Figure 5.7: The m+,- distributions of signal B® — KYK2K?(7"7~) Monte Carlo (left),
and events in the on-resonance data sample (right).

4. K vertex probability P(x?) > 1075;
5. (K¢ decay time significance, 7y /0(7x9) > 5),

where m+,- is the invariant mass of the two tracks in the pion mass hypothesis after

PDG

the vertexing, and Mo

is the nominal K mass [21]. 7gec is defined as the 2D decay

distance from the beam-spot,

Tdec = \/(xvtx - xbs)Q + (yvtx - ybs)Q- (51)

The pointing angle « is the two-dimensional angle between the vector from the beam-spot

A

to the decay vertex of the KY and the momentum vector (in zy plane), cos @ = Fgec - Py
when 740, and ]5Xy are unit vectors.

Figs. 5.7, 5.8, 5.9, and 5.10 show the K mass, momentum, decay length, and «
distributions respectively for data and Monte Carlo for B® — KYK?KY(7"7~). The plot
of the KY mass shows that the level of background is quite low and most K0s in the plot
are likely to be real K2.

Fig. 5.11 shows the decay time significance for K? — 777~ candidates in signal Monte
Carlo and background events for B — K?KYK%(77°) mode.

The selections are chosen with an optimization which maximizes the statistical signif-

icance of the signal, defined as:

N, = Ns/v/Ns + Ng (5.2)

where Ng and Np are the expected numbers of signal and background events in the final

dataset.
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Figure 5.8: The K momentum distributions of signal B — K(KYK%(7T7~) Monte
Carlo (left), and events in the on-resonance data sample (right).
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Figure 5.11: The K Txo/0(7kg) distributions of signal B — KJKJKJ(7°m°) Monte
Carlo (crosses), and background events in the on-resonance data sample (solid histogram).

5.2.2 K‘S) — 797Y% Reconstruction

O — ~~ candidates from pairs of

In order to reconstruct K2 — 7m97% decays we form m
photon candidates in the EMC, which are not matched to any track of the event.

The electromagnetic shower produced by a charged or neutral particle in the EMC
forms a cluster of energy deposits spread over many adjacent crystals. Meanwhile, photons

0 — ~v decays often illuminate adjacent crystals, producing two

from high momentum 7
energy maxima (known as bumps) within one cluster. The EMC reconstruction algorithm
searches for seed crystals which register an energy deposit of £ > 10 MeV, and then builds
a cluster by adding crystals with £ > 1 MeV which are either adjacent to another £ >
3 MeV crystal in the cluster or the seed. Crystals with energy FE satisfying E'/E <
0.5(N —2.5), where E’ is the highest energy of the neighboring N crystals with > 2 MeV,
are identified as constituting a local maxima. Bumps are built from these crystals with
an energy determined by an algorithm which iterates the fraction of energy contributed
by each crystal in the cluster until the bump centroid is stable up to a tolerance of 1 mm.
Another center-of-gravity algorithm locates the bump position using logarithmic crystal
weights. A cluster association with a charged particle is made if the projection from the
bump centroid to the inner face of the calorimeter is consistent with a track trajectory.

Otherwise, the bump is considered as a neutral particle with a trajectory originating at

the interaction point. Good clusters are defined as possessing energy E > 30 MeV/¢, lab
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Figure 5.12: 6 — ¢ representation of a region of the calorimeter. All the variables entering
the definition of EMC-related quantities are shown.

frame polar angle 0.41 < 0,45 < 2.409 (i.e. within the fiducial volume of the EMC), and
lateral shape parameter LAT < 1.1 [54]:

Zi:Q,n Ei-r}
<Zi:2,n B 7"22) +25(Ep + Ev)

(5.3)

with the crystals in descending energy (F;) order, N the number of crystals composing
the reconstructed cluster, and r; and ¢; are the polar coordinates of the same crystal on
the plane perpendicular to the line going from the B vertex to the center of the shower. r
is the typical average distance between two crystals (5 cm in BABAR EMC). The variables
entering LAT definition are illustrated by Fig. 5.12. This variable is used to distinguish
energy clusters coming from electrons and photons from those generated by hadrons.
Using the fact that hadronic showers typically have a more irregular shape with respect
to those generated by electromagnetic interactions, this variable is defined to maximize
the separation between the distributions of these two classes of clusters. Since the two
most energetic clusters of an electromagnetic shower bring in average a large fraction

of the total energy, LAT values for photons and electrons are typically smaller than for
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Figure 5.13: Distributions of LAT variable for photons coming from B® — KYK2K?(7%7)
signal Monte Carlo events (crosses) and background events in on-resonance data (solid
histogram). The two distributions are normalized to the same area.

hadrons and a loose upper cut removes a large fraction of the hadronic contamination.
We found this variable useful also to discriminate true 7°’s from random combinations
of two photons, since LAT depends on photon energy and 7’s coming from signal and
background have different spectrum. This is shown in Fig. 5.13.

The photon energy resolution is measured from a radioactive source (at the low end),
eTe” Bhabha scattering events (at the high end), and decays of x., 7°, n, and other
particles (in between). A fit over this data provides the energy dependence of the resolu-
tion [55]:

op _ (23240304 (1.85 +0.12)%. (5.4)

E 1/ E(GeV)

Similarly, studies of 7% and 7 decays to two photons of approximately equal energy provide

an empirical parameterization of energy dependence of the angular resolution [55]:

o9 =04 = 387 = 0.07 + (0.00 & 0.04)mrad. (5.5)
E(GeV)
Typical 7° mass resolution in hadronic events is 6.9 MeV/c* (Fig. 5.14a). Fig. 5.14b
displays the measured over expected energy ratio for radiative Bhabha events.
In order to reject spurious 7° candidates, we require (100 < m., < 141) MeV/c? for
B — KJK?K? analysis and (100 < m,, < 0.155) MeV/c? for B® — KTK~ K2(r"7°).
Finally we form K? candidates from selected ©”’s pairs, requiring they have an in-

variant mass (477.6 < mqor0 < 527.6) MeV/c? for B — KT K~ K9(7°7") decays and an
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Figure 5.14: (a) The n° mass distribution reconstructed from two photon candidates in
hadronic events overlaid with a fit to the data. (b) The ratio of measured to expected
energy for electrons in radiative Bhabha events overlaid with a Gaussian fit. The expected
value is calculated from the production angle. The resolution is 1.9%.

invariant mass (480 < myo0 < 520) MeV/c? for BY — KYKYK2(7%7%) decays. We show
in Fig. 5.15a the distribution of K? invariant mass for signal and background events of
BY — KTK~K(77°), compared with the K? — nt7~ invariant mass. In Fig. 5.15b
the distribution for 7%7°

B — KYKOK%(m7%) decays.

invariant mass is shown for signal and background events of

5.3 K Reconstruction

Due to their long lifetime, K? mesons decay outside the BABAR tracking volume, and they
can be reconstructed only via their inelastic nuclear interactions in the crystals of the
EMC or in the iron-absorber layers of the IFR [52, 55]. Since BABAR has not a hadronic
calorimeter, the momentum of the K? candidate is not measured and only the flight
direction can be reconstructed.

In the analyses, a mass constraint of the K mother candidate has to be applied to
calculate the KY momentum.

The K? reconstruction starts by selecting neutral clusters, from the available 3D IFR

clusters in each event, by checking that no reconstructed track extrapolates (using a
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)

swimmer algorithm) to the IFR cluster position. An algorithm attempts to combine
such neutral clusters, as being associated to the same hadronic shower on the basis of a
vicinity criterion. The final object output by this process is a neutral cluster aggregate
which combines both IFR and Inner RPC response to the particle. Such an object can
have components found in different geometric sectors of the IFR and can provide a first
estimate of the neutral hadron flight direction.

An association is formed between the above IFR aggregate and calorimeter clusters,
assuming that the position of the EMC cluster provides the position of the first interaction,
that the shower develops into a cone of tuned opening angle, and taking into account the
covariance matrix of the IFR aggregate. Each created association has a significance level
based on the x? of the match, which can be used to select different match qualities. The
IFR-EMC association is used to create an object representing the neutral hadron. This
object provides the implementation of different algorithms for the computation of the
flight direction and is available for the physics analysis.

A good resolution for the KY flight direction helps provide a clean reconstruction of
the signal channel B — KTK~K? We will discuss in Sec. 5.3.1 the basics of the K?

reconstruction in the IFR and in Sec. 5.3.2 the reconstruction in the EMC.
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5.3.1 K Reconstruction in the IFR

The preliminary selection of K? candidates in the IFR makes use of the following cuts:
1. At least 2 planar layers;

2. the cluster center-of-gravity must have —0.75 < cosf < 0.93. This cut is aimed to

reject beam background in the very forward regions;

3. rejection of clusters starting in layer 14 and beyond. Also this cut reduces beam

background contributions;

4. The relative position between the cluster centroid and the EMC position of any track
with momentum greater than 0.75 GeV /c must satisfy |0k, — 04| > 350 mrad, as
well as to be out of the interval -750 < ¢x, — ¢ir < 350 mrad for positively charged
tracks, and -300 < ¢x, — ¢ur < 750 mrad for negatively charged tracks.

5.3.2 KB Reconstruction in the EMC

The preliminary selection of K? candidates in the EMC makes use of the following cuts:

1. The centroid of the cluster must have cosf < 0.935. This requirement is aimed
to reject residual non-matched charged hadrons. In fact, the tracking efficiency is
very high, but at some point fails in the very forward region. This is illustrated in
Fig. 5.16, where the distribution of bad neutral clusters is shown for photons from

7% — v decays.
2. The cluster energy range is 200 MeV < E < 2GeV.
3. Probability of the cluster to match any track < 1%.

4. The Ky candidate can not form a ~v invariant mass between 100 to 150 MeV/c?
with any neutral candidate in the event having at least 30 MeV. This requirement

is not applied if Zernike moment Zyy < 0.8 (see Eq. 5.6).

5. Reject two-bumps clusters with a cluster energy larger than 1 GeV that are consis-

tent with a merged 7° (m(2 bump) > 110 MeV).
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Figure 5.16: Fraction of bad clusters as a function of cosf in the very forward region in a
sample of neutral clusters from photons coming from 7° — ~~ events. Bad clusters are
defined as the ones which does not belong to the 7° peak in Fig. 5.14a.

where the Zernike moments are an expansion of the shape of the shower in terms of
Zernike polynomials [56]:

- E; T —imd,
where r; and FE; have the same meaning of Eq. 5.3, Ry is the Moliere radius (~ 3.8 cm for
the BABAR EMC crystals) and f,,,,, is the Zernike polynomial of order n, m. The spacial
energy distribution of a cluster can be developed as a series of Zernike polynomials (which

form a complete basis):

E@E,y) =Y Znm Com(r,¢) (5.7)

Moments with indices m > 0 are ¢-dependent.

5.3.3 K Calibration with ete™ — ¢(KJK?)~ Decays

The K? detection efficiency can be evaluated using the detailed Monte Carlo simulation;
the lack of available experimental data makes the hadron shower simulation not entirely
reliable at low momenta, and the results depend somewhat on the hadronic shower gen-
erator used. Hence, it is important to find a calibration channel so that identification and
detection efficiency can be tested directly with data.

The ideal calibration channel would have a branching ratio much larger than ~

1 x 1072, which is the branching ratio of the decay channel B® — KTK~K?, and should
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be as pure as possible, to enable the identification of K on an event-by-event basis. Un-
fortunately there is no single B decay mode with a KV in the final state, with a branching
ratio much larger than the reference channel which can be kinematically selected. The
number of K? from this calibration channel is ~ 3000 times more than the golden channel
B — JW K.

A copious source of K%’s, however, is the decay ¢ — K2K?, which is produced abun-
dantly, both in the continuum and in 7°(4S) events with an emission of an hard ISR
photon. The inclusive ¢ production rate is very high, ~8% per event, and roughly the
same for 7°(4S) events as for continuum events. The continuum cross section is ~3.5 times
the peak cross section of 1'(4S) — BB, so that the number of K? from this calibration
channel is ~5000 times more than the our signal channel.

The expected distribution of the opening angle between the two kaons in the laboratory
frame, has a peak at small angles, due to the average ¢ velocity and to the very small K?
momentum in ¢ centre of mass frame. The inclusive angular distribution between any
K? and any K? from hadronic ete™ interactions (both 7°(4S) and continuum events), is

shown in Fig. 5.17a.
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Figure 5.17: (a). Opening angle between K9 and KV for 7°(4S) events (grey histogram)
and continuum events (white histogram); (b). Momentum spectrum of K? from ¢ decays.

In any such event where a K? is selected, there is a good probability to find a K?
within a cone of ~10°, enabling K? to be selected and their direction to be estimated
using observed K?. The corresponding K momentum spectrum is shown in Fig. 5.17b.

It can be seen that it covers most of the critical range where the detection efficiency needs
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to be tested. The K% from B — KT K~K? decay typically have momenta of 1-3 GeV/c.
In the higher momentum range, the detection efficiency is expected to flatten out anyway.

Further selection criteria can be found to enhance the signal from ¢ decays with respect
to the background. From the study of K from ¢ decay, it is also possible to determine
the Kg momentum (or the missing momentum of the event) PKg = DPmiss, With reasonable
resolution, from the measurement of the momentum Py of the K? and the opening angle

a, with the relationship:
M3 = 2mio + 2[Exy Exg — Py Pyey cosal. (5.8)

This equation has two solutions for Preo, and thus introduces a two-fold ambiguity. The
ambiguous cases can be reduced strongly as follows. First of all, only those events are
selected where the solution corresponding to the lower momentum gives a value too small
for detection, (P, < 500 MeV). Furthermore the correct solution is fairly flat in the
¢ center-of-mass reference frame (the ¢ being mostly unpolarized and the detection ef-
ficiency affecting mostly very forward angles). On the contrary the wrong solution is
strongly backward-peaked. In cases where only one of the two solutions is in the back-
ward hemisphere, the solution in the forward hemisphere is likely to be correct. This
criterion also drastically reduces the combinatorial background, since for these events,
both solutions are likely to correspond to backward emission. An additional cut on Pyo
may halve this background without affecting very much the events from ¢ decay.

We reconstruct a KY — 777~ with the standard selection described in Sec. 5.2.1.
Instead of using the PKO = Dmiss evaluated in 5.8 we use the missing mass of the event

Am:
Am® = |ng 2 (5.9)

In order to further clean the sample we require a very hard ISR photon and apply
a loose cut on the reconstructed missing mass. We also apply an “isolation cut” on the
missing momentum requiring that in the EMC the signal K? does not overlap with the

shower produced by pions coming from the signal K? decay (see Fig. 5.18):
1. 4.0 < the energy of highest energy photon < 10.0 GeV (CM frame)
2. Am > 0.4 GeV/c?

3. angle(pmiss, 7/ 7) > 100 mrad in the EMC



5.3 KV Reconstruction 117

-1

Expected events in 225 fb

02 03 04 05 06 07 08 09 1
Angle(n*,EMC)

Figure 5.18: Opening angle between missing momentum and 7% coming from signal K?
decay before the “isolation cut”. The distribution for 7~ is similar. Signal ete™ —
H(KYK?)y events (red), continuum u/dd/s5 (grey), continuum cé (brown) and the sum
of all these components (white histogram) are normalized to 225 fb™".

When multiple candidates are present, we look for the minimum x? of the K? mass to
select the best candidate. In Fig. 5.19 the distribution of the missing mass for the different
contributions is shown, normalized to 225fb~*, which is approximately the luminosity of
the data used for this analysis (Runs I-IV). This plot shows that the main background
comes from light quark continuum production, while the contribution due to c¢ is negli-
gible.

We extract the signal performing a fit to the Am distribution. We parameterize the

signal probability density function (PDF) with a so-called Crystal Ball function [57]:

1 R P
e 202, X Ty T QO
fCrystal Ball (33', o, 0, &, TL) = N ’ (n/a)"670‘2/2 (510)

((x—wo)/o+na—a)? T > X9+ oo

where zy and o represent the mean and the resolution of the core Gaussian, « is the
value of = at which the distribution becomes not Gaussian and n is the exponential of the
non-Gaussian tail. The signal Monte Carlo events with the PDF are shown in Fig. 5.20.
The continuum background distribution is parameterized with a phase space function,

introduced by the ARGUS collaboration [74]:
farcus(x) = 2V 1 — x2exp [—5(1 — x2)] (5.11)

where ¢ is a floating parameter describing the slope of the distribution.
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Figure 5.19: Missing mass (Am) distribution for signal e*e”™ — ¢(KJK7)y events (red),
continuum w/dd/ss (grey), continuum ¢ (brown) and the sum of all these components
(white histogram) are normalized to 225 fb™'.
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Figure 5.20: Missing mass (Am) distribution for signal ete™ — ¢(K2KY)y events, with
the signal PDF superimposed. The parameterization is obtained from a maximum likeli-
hood fit to signal Monte Carlo sample with a Crystal Ball function.
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We perform the maximum likelihood fit to an on-resonance sample equivalent to 230
fb~!. Since the signal statistics and the signal-to-background ratio are good enough, we
fit the mean and the resolution of the signal peak, together with the background slope
&. The result is shown in Table 5.2. The number of signal events is found to be 11712

+ 176. The mean of Am distribution is consistent with the nominal K° mass [21]. The

Parameter value
Nsig 11712 £ 176
Nikg 27840 £ 226
Ty (496.7 £ 0.1) MeV/c?
o (6.9 £ 0.1) MeV/c?
ARGUS ¢ -0.10 + 0.02

Table 5.2: Fitted yields in a luminosity of 230 fb™' of on-resonance data sample for
ete” — ¢(K2K?)y events, together with the main signal and background parameters.

Am distribution on the on-resonance dataset, together with the fit result, is shown in

Fig. 5.21.
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Figure 5.21: Missing mass (Am) distribution for ete™ — ¢(K2K?)~y events in the final
Runl-IV dataset, with the fit PDF superimposed. Continuum line: total PDF, dashed
line: continuum background only PDF.

The events extracted by this fit represent the normalization sample for our study.
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Reconstruction of KS Clusters

The distribution of this opening angle for EMC (IFR) clusters in the different components
is shown in Fig. 5.22 (5.23). We look for EMC and IFR candidates inside a cone of 200

mrad from the missing momentum direction.
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Figure 5.22: Left: distribution of the opening angle between missing momentum direction
and EMC cluster one. Middle: difference in the polar angle; right: difference in azimuthal
angle. Signal ee™ — ¢(KYK?)y events (red), continuum uii/dd/ss (grey), continuum cc

(brown) and the sum of all these components (white histogram) are normalized to 225
1.
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Figure 5.23: Left: distribution of the opening angle between missing momentum direction
and IFR cluster one. Middle: difference in the polar angle; right: difference in azimuthal
angle. Signal ee™ — ¢(KYK?)y events (red), continuum ui/dd/ss (grey), continuum cé

(brown) and the sum of all these components (white histogram) are normalized to 225
1.

Since our main goal is to study K9 signals in the EMC and IFR, we accept only
events which have an EMC or IFR cluster inside 200 mrad from the missing momentum.
In Fig. 5.24 we show the Am distributions with a reconstructed K. Since the signal-to-
background ratio (and also the nature of the background) is different in the EMC and in
the IFR, we divide the sample in one made by events with at least one EMC cluster (and

which can have also some IFR interaction) and events without EMC clusters (“IFR-only”
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events), consistently with what is done in B — KTK~K? analysis. In Table 5.3 we

report the yields for events with reconstructed K.

Parameter EMC IFR-only
Nsig 5175 + 201 1225 £ 76
Niig 11686 + 210 1134 4+ 76

Table 5.3: Fitted yields in a luminosity of 230 fb™' of on-resonance data sample for
ete” — ¢(K2K?)y events, with a K? cluster reconstructed in the EMC or IFR in a cone
of 200 mrad around the missing momentum.
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Figure 5.24: Missing mass spectrum for the full Runl-IV ¢+ dataset with the fit PDF
superimposed. Continuum line: total PDF, dashed line: continuum background only
PDF. Left plot: events with at least one reconstructed EMC cluster. Right plot: events
with at least one IFR reconstructed cluster without any EMC cluster (“IFR-only” events).

Studies on Monte Carlo samples show that the hadronic cascade development depend
somewhat on the hadronic shower simulation used. Unfortunately, existing simulations
do not all describe consistently the interactions of K?, above all at low momenta. All
the hadronic interaction models accessible through GEANT should, however, agree on the

general characteristics of the response to penetrating hadrons, namely that:

1. there is a high multiplicity of hadronic shower topologies, distributed over a wide

part of the IFR detector;
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2. shower longitudinal development depends on momentum and particle direction;

3. shower transverse development depends on the particular pattern of showering

physics processes;
4. there is a significant fraction of early hadronic showers in the inner calorimeter.

The dependence on the simulation model of a hadronic shower inside the detector make
necessary a reliable study on a KY control sample. The sample of ete™ — ¢(K2K?)y
events have enough statistics and good purity to test the shower development inside the
detector. Since the main background in the analysis of B — K™K~ K? decays, which we
will present in this work in Chapter 6, comes from badly identified K%’s in the EMC, while
the IFR~only sample has a better purity, we will study the data-Monte Carlo agreement of
the variables which describe the response of the EMC to the passage of neutral hadrons.
Finally, we will develop an algorithm for the particle identification of the KY’s in the

calorimeter and we will validate it on this control sample.

K? Shower Development in the EMC

In order to study the development of the EMC response at passage of K%’s, we exploit a
set of topological variables which characterize the shower shape. The most important are
the lateral moment (LAT), defined by Eq. 5.3, which describes the spread of the shower
in the transverse plane with respect the K" flight direction. We also use the Zernike
moments Z,,,, defined in Eq. 5.6. In particular, we will study the two moments Z, and

Z42:
[ ] ZQO = 27"2 — 1
o 7= (4r" — 3r?)sin2¢

while Zs is correlated with the cluster width, Z,5 gives additional discrimination power,
since it is also sensitive to cluster asymmetries.

The set of other variables we use is defined by:
e Number of crystals

e Second moment:

LB (5.12)
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where FE; is the energy of crystal ¢ and r; is the distance of crystal i to the cluster

center.

e E1/E9: The energy of the most energetic crystal (E1) divided by the energy sum
of the 3x3 crystal block (E9) with the most energetic crystal in its center.

e E9/E25: The energy sum of the 3x3 crystal block (E9) with the most energetic
crystal in its center, divided by the energy sum of the 5x5 crystal block (E25) with

the most energetic crystal in its center.

To extract the signal shape from data we use the ;Plots weighting technique [80]. The
sWeight for each event is calculated using the likelihood function (which is made by the
only Am). The resulting distribution is like a background-subtracted plot, which takes
into account the likelihood covariance matrix.

In order to disentangle the dependency of the shape variables from the momentum
of the KY we compare the distributions in bins of the EMC calibrated energy F.,. We
divide the kinematic phase space in bins of E., instead of its momentum PKo because
this is a measured quantity for K9, while the momentum is evaluated from a kinematic
constraint. In the same plots we compare signal ee™ — ¢(K2K?)y Monte Carlo, signal
ete” — ¢(K2K?)y ,Plots and a sample of almost pure K+ data. From Fig. 5.25 to Fig.
5.31 we show the comparison for the shape variables.

From this study it is evident that the shape of the hadronic shower in the calorimeter
depends highly by the K? kinematics (above all by its momentum, less by its direction).
Also, it is evident that we cannot use the K= as a K? control sample because of different
energy loss mechanism in the calorimeter: above all the presence of energy loss by ioniza-
tion at low energies contributes for a higher e.m. component than for neutral kaons (this
can be seen in all the shape variables for the first two energy bins).

In figures from 5.32 to 5.38 the same variables divided in the same energy bins are
shown for signal and background (Plots in ete™ — ¢(K2KY)y data.

This study shows that the separation power grows with the energy. In the first two
bins there is no separation at all. In fact, the candidates with E.,; < 0.2 GeV are not
included in the B® — KK~ KY at all.

The overall conclusion of this study is that the Monte Carlo simulation with its most

recent implementation of the hadronic shower (Bertini cascade [58]) captures the global
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behaviour of the shape variables, also if some discrepancies are present. However, the
dependency on the kinematics is well reproduced by the simulation.

In order to establish if energy is the only kinematic dependency for the shape variables,
we divide the ¢y sample in four bins of the polar angle. In Fig. 5.39 we show the
distribution of the lateral moment in these bins. Also the other variables show a similar
behavior: the shape for cosfp4p < 0 (we will call it Bwd) is slightly different for the one
in cosfpap >0 (Fwd).
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Dots: ¢ sPlots.

We propose a kinematic binning in the E.,; —6745 space for a K 2 particle identification
algorithm which should in the same time maintain the main dependency on the kinematics
and do a grouping which reduce the finer discrepancies between data and Monte Carlo.
We divide the space in two hemispheres, Fwd and Bwd. Then we divide the momentum

space in three regions:
e Low E: E.,; < 0.2 GeV

e Medium E: 0.2 < E.,; < 0.6 GeV
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e High E: E.,;, > 0.6 GeV

These requirements define six K? kinematic regions. In each of them the PID criteria will

be optimized and validated on data control samples.

5.4 K Particle Identification

Genetic Algorithms [61] are search algorithms based on the mechanics of Darwinian evo-
lution: survival of the fittest. Each possible solution to a given problem (e.g. a set of
cuts on some discriminating variables) is considered an individual: each cut may be re-
garded as one gene, the set of cuts comprising the individual. The genetic algorithm is
designed to find the best solution to the problem from a population of possible solutions.
The algorithm calculates a fitness value for each individual (set of cuts). This is specified
by the user with his/her problem in mind, and could be, for example, a measure of the
signal to background ratio for each set of cuts (individual). Then the worst candidate
solutions (the least fit) are removed from the population. The algorithm then acts on the
surviving solutions using three fundamental (genetic) operators: reproduction, crossover
and mutation: more individuals are “spawned” from combinations of the surviving ones
in order to form a new (descendant) population, which retains the best characteristics of
the previous one. The individuals comprising the population improve, on average, after
each iteration, i.e. they gain better and better fitness values.

In experimental Particle Physics it has been shown [62, 63] that genetic algorithms can
help in physics analysis when statistical significance optimization is needed. Applications
of genetic algorithms [62] include distinguishing signal from background (in rare decays)
and flavour tagging.

In order to tune (i.e. train) a particle identification algorithm that is aimed to dis-
criminate K?’s from background, we need a sample representing the K? signal and one
representing the background. In our study, we use a simulated sample of D — K% 7~
decays as signal', with K? candidates matched with true K? at generation level, and as
background non truth matched candidates in the continuum events reconstructed with
the same selection algorithm.

Each genetic algorithm needs a validation sample for the training procedure. In prin-

IThe D are copiously produced in the ete™ — ¢¢ continuum production. We will describe this other
K? control sample in Sec. 5.5.
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ciple, it is sufficient to divide the same sample used for the training in two independent
sub-samples. We prefer to use a completely independent sample: K’s coming from
B — K*K~K? decays, which also have a wide momentum spectrum. This allows to
test also if the binning is sufficient to represent the characteristics of another decay. Fi-
nally, we validate each selector with the data control samples.

We compare the performances of two algorithms: a selector based on a Neural Network

and another on a Boosted Decision Trees.

5.4.1 Neural Network Algorithm

One of the most used genetic algorithms is a non-linear multidimensional method, also
called neural networks [64].

We train a neural network using 7 input variables: lateral moment, Zernike moments
Zoy and Zy9, energy ratios E1/E9 and E9/FE25, second moment and the number of
crystals. We have shown in the previous section that the general behaviour and their
dependency on the neutral momentum of these variables are reproduced by the Monte
Carlo simulation.

The training procedure is repeated in all the defined 6 kinematic bins. In each bin,
different configurations of learning parameter, number of hidden layers and number of
nodes in each hidden layer has been tried, in order to obtain the best separation between
signal and background.

As discussed previously, we rejected all the reconstructed clusters with E,.,; < 0.2 GeV.
We also cut the clusters with < 2 crystals, because of in this case the lateral moment is
zero by definition (Eq. 5.3) and this can introduce instabilities in the training procedure.
The output of the Neural Network in the previously defined six kinematic regions is shown
in Fig. 5.40, while Fig. 5.41 shows the signal efficiencies versus the background rejection
(i.e. the figure of merit) for the 6 selectors.

The output of the Neural Network reflects the fact that the discrimination power grows

with the energy.

5.4.2 Boosted Decision Trees Algorithm

The algorithm based on Decision Trees has been successfully developed and used in the

event definition of the MiniBooNE experiment [59, 60]. The basis of this algorithm is
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Figure 5.40: Output of the Neural Network algorithm in six kinematic bins. Brown dots:
signal. Blue dots: background.
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Figure 5.41: Figure of merit of the Neural Network algorithm. The curves represent the
different kinematic bins.
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shown in Fig. 5.42. For the variable one (let’s say LAT) choose the value which has the

7/1 2/9

Figure 5.42: Schematic of a decision tree. S for signal, B for background. Terminal nodes
(called leaves) are shown in boxes. If signal events are dominant in one leave, then this
leave is signal leave; otherwise, background leave.

best separation and split the sample in two, one side having mostly signal (S) and the other
having mostly background (B). Then repeat the splitting of these sub-samples according
the other variables. The splitting is done until a given number of final branches, called
leaves, are obtained, or until each leaf is pure signal or pure background, or has too few
events to continue. This process produces the “decision tree”. An iterative optimization
of the binary splittings is then performed, called “boosting”.

MiniBooNE collaboration has shown that this algorithm has better performances than
Neural Network algorithm, especially when the input variables are highly correlated (as
in our case).

MiniBooNE collaboration have also shown that the output is also more stable than
the one of the Neural Networks. We use as a training sample the one used for the Neural
Network, with the same input variables.

For each bin we optimize the minimal leaf size minimizing the Gini index:

S1By So By

Gini =
Si+By Sy+ By

(5.13)
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where if the initial sample is composed by S signal events and B background events, S;

and B; are the number of signal and background events of each of the two splitted samples

(called leaves). The output of the boosting technique has a probabilistic interpretation:

if  is a given point in the space (which has N dimension if N is the number of variables

used) and f(z) is the output, this can be written as
Py = +1jx) _ o2f(@)
Py = —1z)

that is, the ratio of probability of signal over the probability of background for that point

(5.14)

is a simple function of the output f(z). In Fig. 5.43 we show the output of this algorithm
in the six previously defined kinematic bins, while in Fig. 5.44 the relative figure of merit

is displayed.
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Figure 5.43: Output of the Boosted Decision Trees algorithm. Black dots: signal. Red
dots: background.

Also in this case, the best separation is achieved in the high energy region, while for
E.. < 0.3 GeV the distribution of signal and background are almost the same.
We also note that both for Neural Network and Boosted Decision Trees, in the same

energy bin, there is a better separation in the cosf < 0 region than in cosf > 0. This
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Figure 5.44: Figure of merit of the Boosted Decision Trees algorithm. The curves represent
the different kinematic bins.

reflects the more photon-like shape of the variables in the Bwd bin (see for example
lateral moment in Fig. 5.39). In Fig. 5.45 we compare the two selectors in the two spatial

hemispheres.
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Figure 5.45: Comparison of the figures of merit of the Neural Network and Boosted
Decision Trees algorithms in the two hemispheres Bwd (left plot) and Fwd (right plot).

From the comparison we conclude that there is not a large difference in the perfor-
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mances between the two algorithms, but Boosted Decision Trees seems to be better in
the regions of most interest for the analyses (E.; > 0.3 GeV). Also, Boosted Decision
Trees seems to be more stable in the sense that if the input shapes have a small change,
the output shows only small changes, while Neural Network can change a lot. Also,
the Boosted Decision Trees have a shape which is more easily parameterizable than the
irregular output of the Neural Network.

We will denote the group of the 6 selectors obtained with Boosted Decision Trees as

Totti selector 2.

5.4.3 Validation of Kg Selector on Data

We validate the output of the Totti selector using ete™ — ¢(KYK?)y data control sample.
We evaluate the algorithm output for each event using the trained configuration. At each
event the ;Weight is assigned using the likelihood function. The output in the 6 bins for
signal and background events is shown in Fig. 5.46. Comparing the shapes of the selector
with the one obtained on Monte Carlo and sideband data in Fig. 5.43, it is evident that
the selector has a similar discrimination power in the two cases. The test is also significant
because the kinematics of the K? in ete™ — ¢(KYKY)y is very different to the one of the
training sample (D' — K7t 7~). In fact, since the ¢ recoils against the hard ISR photon,
the K direction accumulates in the Bwd region. Concluding, this is a successfully test
of the generality of the selector. In order to give a more quantitative estimation of the
data-Monte Carlo agreement, we superimpose the distributions for ete™ — ¢(K2K?)y
signal Monte Carlo and ,Plot weighted data, and evaluated a x? for each kinematic bin.
The comparison is given in Fig. 5.47.

Even if the uncertainties on data events are high, due to the low statistics (above
all in the low energy bins), the behaviors are very well reproduced in 5/6 bins. In
[Fwd, HighE,] there is a shift and the presence of a tail for lower values (even if the dis-
crimination power with respect to background is similar to the one obtained with Monte
Carlo). The final shape can be taken from Monte Carlo in the 5/6 bins where the agree-
ment is very good, and from ¢~ signal ;Plots for the bin where there is disagreement,

since in that bin there is enough statistics on data.

2 After the name of the famous Italian football player and world champion, Francesco Totti
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5.5 K Efficiency Calibration with D° — K)wntnx~
Decays

One of the measurements presented in this work is the CP asymmetry in the B° —
KTK~K° decays with Dalitz plot technique (Chapter 6). We both consider K — K?
and K — K9 sub-modes. In order to modulate correctly the Dalitz plot model for
BY — KT K~K? decays, we need a correct efficiency map in the Dalitz plot, which means
that we need the KV efficiency as a function of the neutral hadron momentum. With
this purpose, we need to calibrate it with a data control sample. The eTe™ — ¢(KYK?)y
sample has not a sufficient number of events to be divided into enough bins in the position-
momentum space. Because of that, we decided to use the more copious source of K9’s
from D° — K%rTn~ decays, where the D° are produced by D** — DY decays, and
the D** come from inclusive production ete™ — D**X. We use both on-resonance and
off-resonance events. The high statistics of this samples is determined by the high cross
section of the process: o(ete” — D*X) = 580 £ 70 pb [65] and from the branching
fractions of D* — D%r and D° — K77, which are 0.68 and 0.7 x 1073 [21].

Since the K? momentum is not reconstructed, it is evaluated assuming that it comes

from a D decay, using the relation
m2DO = (EKE + Eﬂ*ﬁ*)2 - (ng + p7r+7r*)2 (515)

where mpo is the nominal D° mass [21], and (Exo, pko) and (Eq+x-, Pr+r-) are the four
momenta of the K? and the 777~ pair, respectively. To reconstruct the D* candidate,
we look for a slow pion among the pions of the event which are not associated to the D°
decay. The event is then kinematically characterized by the variable Am, which is the
mass difference between the D* and the D°. The signal is expected to peak at the mass
of the 7t, while the background, made of random combination of particles, shows a more
phase-space distribution.

In order to extract the signal we perform a maximum likelihood fit to the data. The
signal is parameterized on signal Monte Carlo sample with a double Gaussian, while the

background is parameterized with a threshold function:
@)y = (3 — )" - e Ham0)* ~cla=z0) (5.16)

where x is the lower physical limit of the distribution and a, b and ¢ are slope parameters.

The result of the fit on data is shown in Fig. 5.48, where the contribution of the background
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and of the wide Gaussian component of the signal are also shown. The fit results are
shown in Tab. 5.5. The purity of the signal in the interval around one standard deviation

(considered as the resolution of the wider Gaussian) from the mean, is ~ 40%. The

00.14 0.142 0.144 0.146 0.148 0.15 0.152 0.154 0.156 0.158
deltam (GeV/c?)

Figure 5.48: Am distribution on 230 fb™' of data. Green is background, dashed curve
corresponds to background plus wide Gaussian component for the signal.

Parameter Final Value
Am mean value (signal) 145.48 +0.01 MeV/c?
oam(narrow Gaussian)  0.72 £ 0.03 MeV/c?
oam(wide Gaussian) 1.71 4+ 0.10 MeV/c?

Niig 55220 £ 3438
Nipig 226980 + 21398
a 0.59 +0.01

b 99 £ 79
c 43.7+2.1

Table 5.4: Results of the Am fit: a, b and ¢ refer to shape variables in Eq. 5.16.

signal is one order of magnitude higher than the one for eTe™ — ¢(K2K?)~y sample, even

if with lower purity.
Once the KV is identified, we want to use it to obtain a correction of the reconstruction

efficiency to apply to the Monte Carlo simulation in the EMC. In order to obtain an
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estimation of the correction, let’s consider the ratio

€K2 DATA — N(KI? D/(X)TA) (5'17)
EKO EMC fe x N(K} ye)

L MC

where N(K? ,,74) and N(K? ;) are the signal K? yields respectively obtained from the
data and MC D° — K?7 "7~ samples, and f, is the scale factor which scales the expected
yields to the actual luminosity. This ratio would give us something that depends primarily
on the K? EMC interactions if N(K? ,,~) was properly scaled to the data luminosity L.
However, there are inescapable and relatively large uncertainties on the Monte Carlo f,
that do not depend on the KY EMC interactions, but on the D* production rate, D°
branching fraction, D° — K%r*7~ kinematic in the Dalitz plane and other generator-
level quantities.

To isolate data-Monte Carlo discrepancies of K? interactions in the EMC potentially
(affecting analyses of other decays involving a K?) from other potential data-Monte Carlo
discrepancies (that are specific to the DY — K%~ sample), it is better to use the

double-ratio of Eq. 5.18:

<N(K2)> (N(KE DATA>>
€K2 Mo (N(K2)> <N(Kg DATA)> '
EMC N(K3) ) mc N(KS pmo)

where N(K?) and N(K?) are the K? and K? yields (data or Monte Carlo) respectively
obtained from the D° — K% tn~ and D° — K277~ samples. The latter is obtained
reconstructing the decay treating the K9 as a K°, which means that the information of
the K? daughters is not used to know the KY momentum, which is computed with the
DP mass constraint as in Eq. 5.15.

The signal is extracted with a similar maximum likelihood fit to data (like for the
D° — K% 7). The result of the fit on Am variable is shown in Fig. 5.49. The signal
yield is 37516 4 258 events in this case.

In Eq. 5.18, there is no more the luminosity scale factor f; because that factor is
the same for the D* — K% "7~ and D° — K2r"7~ samples and hence cancels out. All
generator-level effects (i.e. production rates) being cancelled out in the double-ratio of
Eq. 5.18, this quantity thus remains sensitive to reconstruction effects only. Since we can
safely assume that the K reconstruction is much better simulated than the K9 one, we

conclude that deviations of the double-ratio from 1.0 is a good estimator of data/MC
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Figure 5.49: Am distribution fit for the D — K277~ sample in data (230 fb™1).

discrepancies in the reconstruction of K%s in the EMC. To be valid, Eq. 5.18 needs
the D — K% tr~ and D° — KOnt7r~ samples integrated luminosities to be equal,
which is guaranteed by our reconstruction strategy (we reconstruct D° — K77~ and
D? — K%t m~ samples simultaneously).

We extract the efficiency corrections of Eq. 5.18 from fits in bins of momentum and
Orap. We use the computed momentum of the K9 and not the value of E.,, because
the latter variable is not defined for D° — K277~ sample (the K2 does not reach the
calorimeter). In Fig. 5.50 we show the correlation between the computed K? momentum
and E.q for DY — K%1t7~ events, after the ,Plot weighting technique has been applied.
EMC efficiency corrections vs pgo are shown on Fig. 5.51. These corrections are inde-
pendent of the kinematic of our D° — K%rt7~ sample and can safely be used in other
decays. EMC efficiency corrections vs fxo are shown on Fig. 5.52. No sharp dependency
is observed, and the 0xo dependency of efficiency can be also neglected.

We also compute an average correction of the efficiency for K? candidates with E.,; >
50 MeV in different run periods: we evaluate it to be 0.956+£0.021+0.007 for the Runl-IV
periods and 0.989 + 0.043 £ 0.007 for RunV period. The first error is statistic and the
the second systematic, where the main source of systematic uncertainty comes from the
PDFs parameterizations and from possible bias in the fit and in the PKo evaluation.

We will use these results to correct the Monte Carlo efficiency across the Dalitz plot
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for BY — K™K~ K? decays (Sec. 6.3.4).



Chapter 6

Measurement of CP Asymmetry in
BY — KT K~ KY Decays

In Chapter 3 we described the dynamics of a decay of a B meson in three kaons. In this
Chapter we will focus on the particular decay of the neutral B meson into K+ K~ K?,
where the KY can be both a K9 or a KV.

As discussed in the theoretical introduction of Sec. 1.6, the decay BY — KTK~ K" is
one of the most promising processes to search for physics beyond the Standard Model.

A full Dalitz plot analysis of these decays is necessary to measure CP asymmetry
because this final state has not a definite CP eigenvalue, but it depends on the relative
angular momentum of the K™K~ system (Sec. 1.5). The Dalitz plot analysis allows to
take into account the variation of the CP-odd and C'P-even mixtures across the three-body
phase space. Moreover, the contributions from b — ugq tree amplitudes, proportional to
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V,;, with a CP-violating weak
phase v [21], although small, may depend on the position in the Dalitz plot. In fact, in
BY — ¢(K+tK~)K" decays the modification of the CP asymmetry due to the presence
of suppressed tree amplitudes is estimated to be (0(0.01) [66, 67], while at higher KK~
masses a larger contribution of the order of ©(0.1) is possible [26].

Furthermore the simultaneous presence of CP-odd and CP-even amplitudes contribut-
ing to the decay rate gives the opportunity to measure the CP-violating parameter (3,
removing with a direct measurement the four-fold ambiguity arising in the case of the
time-dependent CP asymmetry with only one CP contribution, like in B® — [cc] K. In
this case, one accesses only the trigonometric function sin 25 of the CKM angle 3.

For this measurement we use 347 x 105 BB pairs recorded at the 7(4S5) resonance by

the BABAR detector.
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6.1 Removing the Ambiguity in 3 Using Interference
Terms

In this section we show how, using the interference between C'P-even and CP-odd contribu-
tions to the decay amplitude in B — K™K~ K° decays one can measure the CP-violating
parameter § without the four-fold ambiguity.

Let’s consider a Dalitz plot with only two resonances. Assuming no CP violation, we
set the isobar coefficients b = = 0 for the asymmetry in the amplitude and in the phase,
respectively, as we defined in Sec. 3.6.1. Therefore the average amplitude and the average
phase, respectively, are ¢ = ¢ and ¢ = ¢, such that for CP-even decays A = A and for
CP-odd decays A = —A.

In the case of the presence of a single partial wave (for example S + S-wave in the

K*K~ system), the cosine term disappears
AP — A" =0
and the total rate is
|A|2 + }fl‘Q = 2 (c%|f1\2 + c§|f2\2) +4cicRe (ei(‘z”_@)flf;)

which contains a “standard” Dalitz plot information on resonance fractions and interfer-
ence pattern. Additional informations exist in the “sine term”. When both resonances

are S(P)-waves in the Kt K~ mass system, this terms gives:
2Im (AA*e™*P) = Fsin28[2 (1] + | fo|?) F dcicoRe (ei(‘z’l_@)flf;)} .

In this approximation (no CP violation) the magnitude of the time-dependent asymmetry

gives additional information on fractions and phases. In the simplified notation of the

“sine” and “cosine” terms of the time-dependent CP asymmetry S and C| respectively,

which we introduced in Eq. 1.55 for the B® — [cc| K° decays become:

2Im(AA*e=%5)
|A[? + A2

S = Fsin 20

and

_ AP AP
AP+ AR
This means that for a single pure partial wave, we measure sin 23 that gives 4-fold ambi-

guity on [3.
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When waves with opposite parity are present (for example S + P-wave in the K™K~

system), the “sine term” becomes
2Im (flA*e’Qiﬁ) = sin23[2(d/1]? = &)
+cos2(3 [4clcgfm (ei(m—éz)flf;)]

and hence |S| # sin 20 and a cos 23 term appears in the equation. This is why interference

terms of opposite CP eigenstates allow direct determination of (3, instead of just sin 2.

6.2 The Squared Dalitz Plot

The description of the three-body phase space relies onto a set of two independent kine-
matic variables. The standard Dalitz plot variables are a set of two squared invariant
masses of the B daughters. In order to simplify the relation describing the boundary of
the Dalitz plot we choose the observables mqs, which is the invariant mass of the KTK~
system, and cos 6y, where 0y is the helicity angle of the K™K~ system. It is defined as
the angle between K and K° in the K+ K~ center of mass frame. The Jacobian of the

transformation from ’standard’ Dalitz-plot variables, Eq.(3.1), to our PDF variables

dm?3, dm3, = |J|(dmi2)(d cos 0y) (6.1)
is given as

| J] = (2ma2) x (2pq) (6.2)
where p is the momentum of K2 and ¢ is the momentum of K+, both computed in KK~
center of mass frame. The Jacobian of the transformation is shown in Figure 6.1.
In this way the infinitesimal element of the phase space is
dPS =dm -dcosOy - |J| - dAt

where At is the difference in the decay times of the B and B°. The fraction of an

individual resonance r is computed as

22 (L+82) [ dPS - |,

FF = 6.3
(r) [dPS T (6.3)
and the asymmetry in the B°-B° rates (direct CP asymmetry) is given as
ler|* =& ?
Acp(r ———
w0 =
20,
= — (6.4)

14+ b2

T
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Figure 6.1: Jacobian of transformation (m?,, m?;) <> (mia,cosfy). my+g— is given in

GeV/ 2.
6.3 The Event Selection

We reconstruct BY — KK~ K° decays by combining two oppositely charged tracks with
a K — mrrn~, K% — 7% or K? candidate. The selection of the charged and neutral
kaons is described in Chapter 5. In particular for this analysis, we require that the K+
and K~ tracks have at least 12 measured DCH hits, a minimum transverse momentum
of 0.1 GeV/e, and they must originate from the nominal beam spot. The tracks are then
identified as kaons using a likelihood ratio that combines dF/dz measured in the SVT
and DCH with the Cerenkov angle and number of photons in the DIRC, as described
in 5.1.1.

Charmless decays suffer the contamination of two main sources of background:

1. random combination of particles produced in events of the type ete™ — qg (¢ =
u,d, s,c), when the set of mesons produced by the hadronization of the initial ¢q

pair mimics the signal final state
2. other B decays, having a final state similar to the one considered.

In particular, B decays with higher multiplicity can give this kind of background, if one

of the particles in the final state is lost in reconstruction. In this case, the energy of the
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misreconstructed event is typically lower than for the well reconstructed one, so that the
two components can be easily separated using the kinematic informations.

By far, the higher source of background for these decays is the first one. The branching
fractions for the charmless decays we are going to consider are within [107¢ + 107°], and
the cross section of light ¢ pairs at the 7(45) is comparable to bb cross section (about
1 nb). This means that background suppression has to be powerful enough to bring the
signal over background ratio from O(107%) to (at least) O(1). The most powerful tool to

reject this background is to use the angular distribution of the particles in the final state.

6.3.1 Event Shape for Continuum Rejection

One can exploit different variables to suppress continuum production, all of them relying
on the common idea that ¢g events show a typical jet-like structure in the 7°(45) rest
frame. This behaviour can be distinguished from the isotropic distribution of BB events.

We can build the following variables, using this feature:

1. The normalized second Fox-Wolfram moment [68]: Ry = Hs/Hy, where Hy (Hy) is

the second order (order zero) Fox Wolfram moment, defined as
H, = Z 7’19}’?2’?]‘ P(cosb; ;)
i vis

where P, is the Legendre polynomial of order [, p; is the momentum of the particle
i, 0;; the opening angle between the particles ¢ and j and E,;; the measured energy
of the event. Ignoring the mass of the particles in the final state, Hy = 1 from
four-momentum conservation. Moreover, H; ~ 1 for even values of [ in the case of

jet-like events. Because of that, we reject those events having Ry ~ 1 to suppress

qq background.

2. | cosfg|, which quantifies the agreement between the event shape distribution and

the jet-like structure. We define the sphericity tensor [69]

2
Tas = Y (0ap - P} — Pjalss)
J
where p; is the momentum of the particles in the event and the indices o and f3

run over the components of the momentum vector. Since the tensor is symmetric

for the exchange of o and (3, it can be diagonalized. Calling A{, A2, A3 the three
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eigenvalues, the eigenvector associated to the smallest eigenvalue is called sphericity
axis. The three eigenvectors identify the three axes of the ellipsoid representing the
orientation of the two back-to-back jets. The three eigenvalues give the axis sizes.
For a jet-like event, the ellipsoid collapse on the straight line given by the sphericity
axis. g is the angle between the sphericity axis of the B candidate decay and that
one of the rest of the event (ROE). In the case of a jet-like event, cosflg ~ 1 is

preferred, while BB events show a flat distribution.

3. The sphericity axis is often interchanged with the thrust axis 7" [70] which in prac-
tice provides nearly equivalent functionality. T is defined as the direction which
maximizes the sum of their longitudinal momenta. Typical |cos 87| distributions,

very similar to | cosfg|, are shown in Fig. 6.2 for signal and background samples.
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Figure 6.2: |cosfr| distribution for signal Monte Carlo events and for background data
(on-resonance events with mgg < 5.26 GeV/c?). Green and blue circles represent signal
Monte Carlo events of B® — K™K~ K2(7"n~) and B® — KT K~ K2(77), respectively,
while black and red dots represent background events of B® — KTK~K?(n*7~) and
B — KTK~K%x7%), respectively. |cosfg| shape is very similar to |cosfr|. The
distributions are normalized to the same area.
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4. Legendre monomials of order zero and two, defined as

Ly = ) Ini

i€EROE

Ly, = Z |pi| cos®(6;) (6.5)

i€ROE
where p; is the momentum of the particles of the ROF and 6; is the angle between

the flight direction of the particles and the sphericity axis of the ROF.

5. cos B, the polar angle of the reconstructed B meson in the 7°(4S) center of mass
system. cos 0% follows a 1 — cos?® #% distribution, while the continuum background

follows a flat distribution. The distributions for BB and ¢G events are shown in

Fig. 6.3.
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Figure 6.3: cos % distributions for BB Monte Carlo events (left) and ¢qg Monte Carlo
events (right)

In the analyses we present in this work we use all or a subset of these variables or a
combination of them as input of a more complicated algorithm (a Fisher discriminant or
a Neural Network). The requirements are different for each sub-mode, due to the different
purities, and the best ones are chosen with an optimization together with other selection

variables, that we will show in the next sections.

6.3.2 Selection of B? — K"‘K_Kg

For decays B — KT K~ K? with K? — 77—, K? candidates are formed from oppositely
charged tracks with an invariant mass within 20 MeV/c? of the K? nominal mass [21],

which correspond to about 5¢ window. The K? vertexing follows the standard procedure
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described in 5.2.1. The lifetime significance of the K2 7/0, is required to be larger than
3. We also require that the angle o between the K° momentum vector and the vector
connecting the BY and K? vertices must satisfy cosa > 0.999.

For decays B® — KTK~K? with KY — 7%7% K9 candidates are formed from two
7 — 77 candidates. Each of the four photons must have E, > 0.05GeV and have a
transverse shower shape loosely consistent with an electromagnetic shower!. Additionally,
we require each 7° candidate to satisfy 0.100 < m., < 0.155GeV/c?>. The resulting
K? — 797% mass is required to satisfy 0.4776 < mgomo < 0.5276 GeV/c?. A K?° mass
constraint is then applied for the reconstruction of the B° candidate.

In order to reduce the background coming from misidentified charged pions, we apply
PID requirements on the Likelihood-based selector, described in 5.1.1. We require both
charged kaons to satisfy a tight requirement, except in the region of the Dalitz plot with
my+x- < 1.1 GeV/c?, which is the one dominated by the ¢(1020) resonance, where we
apply a looser and asymmetric requirement on the kaons: one loose and the other not
a pion. We checked, using Monte Carlo samples of signal and ¢ and BB backgrounds,
that using this looser PID in the ¢(1020) region increases the average signal efficiency by
about 13%, with a negligible change in background.

We then finally combine two selected charged kaons with the reconstructed K° can-
didate forming the B° meson candidate. Using the fact that the two B mesons originate
from a well defined initial ete™ state, the kinematics of the event can be closed. Instead
of using the B mass, calculated from the reconstructed energy and momentum, as the
definition variable, we use the additional information of the energy of the initial ete™
state (known with an uncertainty of the order 2-3 MeV) to define a set of two kinematic
variables. They are the beam energy-substituted mass (mgs) and the energy difference
(AE).

The beam energy-substituted mass is defined as:

MmEs = \/(5/2 +pi-ps)*/Ef —ph (6.6)

where /s is the total ete™ CM energy, (E;, p;) is the four-momentum of the initial ete~
system and ppg is the B candidate momentum, both measured in the laboratory frame.

The meaning of this variable becomes clearer if we express it in the 7°(45) rest frame:

Mmgs = \/(\/5/2)2 - P*B2

!The general requirements are described in Sec. 5.2.2
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where p* is the B candidate momentum in the 7°(4S) rest frame. Since the 7°(4S5) mass
is near the BB threshold, the center of mass momenta p% of the B mesons are very small
(= 340 MeV/c) when compared to the beam energy /s of more than 10.5 GeV. Therefore
%] < +/s/2, and the beam substituted mass is dominated by the beam energy resulting
in a resolution of ~ 2.6 MeV (which reflects the spread of the beam energy). Typical mgg
distribution for signal events is show in Fig. 6.30a.

Making use of energy conservation, we can also define the energy difference AE as
AE = Ej; —/5/2 (6.7)

where E is the energy of the B candidate in the 7°(45) rest frame. While mgg variable is
related to the measurement of the reconstructed momenta of the final state, AE depends
on the reconstructed energy, the resolution of the latter depending on the reconstructed
B mode. Typical AE distribution for signal events is show in Fig. 6.30b. This fact makes
these two variables particularly suitable for those analyses having only charged tracks
in the final state, as B — KTK~K? with K? — 7"7~. In this case, in fact, the two
variables show a negligible correlation and can be considered independent. In addition,
the resolution of this variable is affected by the detector momentum resolution and by
the particle identification in such a a way that a wrong mass assignment implies a shift
in AE. Because of this, AFE is also useful to reject BB background.

For decays involving photons in the final state, because of energy leakage effects in
the calorimeter, the reconstruction of the energy of the photon can be underestimated,
producing an asymmetric tail in AFE distribution. The typical resolution for AFE is larger
than the one of mgg, being ~ 20 MeV, and it is also larger (= 40 MeV) in the case of
K? — 77 with photons in the final state.

In the analyses we will present in this work, the selection on the kinematic variables
is loose, and a sideband region (defined as the region where the signal is almost absent)
is kept in the final dataset. This allows an higher efficiency for the signal and also a
background characterization using data.

For B — KTK~K? with K} — 777~ the requirements on the two kinematic variables

are:
® mgs > 5.26 GeV/c?

e —0.06 < AF < 0.06 GeV
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For B — K*K~K? with K — 7%7°, we apply the same requirement on mgg, while

we use a looser cut on AFE because of the wide tail due to energy leakage in the calorimeter:
e mps > 5.26 GeV/c?

e —0.12< AE < 0.06 GeV

In order to suppress the high ¢g background we apply a preliminary selection requiring
the | cosfr| < 0.9, which has an efficiency of about 90% on the signal events. The remain-
ing discrimination power, related to the different topology of a BB event and qg event,
is then collected in an algorithm that uses the given inputs to maximize the separation
between signal and background. For B® — K™K~ K2 we use a linear combination of the

other event shape variables, called Fisher discriminant [71]:

N
i=1

The discrimination task consists of determining an axis in the RY space of the discrimi-
nating variables such that the two classes are maximally separated. In order to apply this
method, one needs to know just the mean values of each variable over the full sample, (),
the means over signal and background separately, (fi, fis), and the total covariance ma-

-
trix, U,*

;i » that characterizes the dispersion of the events relative to the center of gravity of

their own sample. The distance between the projected points will naturally be maximum
along the direction defined by the line between pu;, and ps. Then the segment (i, fis) is

the projection axis. The coefficients in Eq. 6.8 could be computed from the equation:

N

;=Y (U + U5 = 1s3) (6.9)

j=1

We use four variables as input of the Fisher discriminant: |cosfg| after the prelimi-
nary cut, the order zero and order two Legendre monomials Ly and L and cos 3. The
distribution of the Fisher variable, for signal Monte Carlo events and for background
data (taken from on-resonance events in the region mgg < 5.26 GeV/c?, where the signal
contribution is negligible) is displayed in Fig. 6.4. In this figure the shapes for signal
and background both for B — K+ K~ K%(7*7~) and B® — KTK~ K?(7%7°) are shown.
These distributions illustrate that they are very similar for the two decay modes. This

is a consequence of the fact that the inputs use the informations of the rest of the event
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Figure 6.4: Distribution of the Fisher variable, for signal Monte Carlo events and
for background data (on-resonance events with mgs < 5.26 GeV/c?). Green and
blue dots represent signal Monte Carlo events of B — KTK-K2(nt7~) and B’ —
KTK~K%77%), respectively, while black and red dots represent background events of
B - KTK~K%(rt7n~) and B® — KT K~ K°%(77%), respectively.

(Eqn. 6.5 for example), so that the output of the algorithm does not depend much on the
reconstructed decay mode.

We finally reject the events with poor At information, requiring |At| < 20 ps and
oat < 2.5 ps. The rom.s. of At distribution is 1.1 ps for the events which satisfy these
requirements. This selection is quite standard and it is applied in almost all BABAR

analyses devoted to the measurement of a time-dependent CP asymmetry.

Correlation of the Event Shape Variables with the Dalitz Plot

Usually, the information on the event shape is fully used in the maximum likelihood fit,
together with the kinematic variables and the time information, as a probability density
function (PDF). The necessary condition to include a variable as a factorized PDF in the
likelihood function is that it is uncorrelated with the other ones.

While the event shape variables are almost uncorrelated with the kinematic variables,
a correlation can arise with the Dalitz plot variables. In signal events, which are all

spherical, there is not an evident correlation. As an example, we show in Fig. 6.5 the
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distribution of the mean of the ratio Iy = Ly/Lg, where Ly and Ly are the zeroth and
second order Legendre monomial, for signal Monte Carlo events in different regions of the

Dalitz plot. The main correlation usually arises for background events. We investigated

N
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Figure 6.5: [, distribution variation in the Dalitz plot for signal Monte Carlo events. The
color represent the mean of the [y distribution in each bin of the Dalitz plot.

if, after applying a tighter cut on |cosfg| < 0.7 (i.e. removing a large number of jet-
like events from the dataset), the correlation with the Dalitz plot position is reduced to
acceptable values.

In Fig. 6.6 we show the scatter plot of I vs. the Dalitz plot variables m(K*K ™) and
cos . While there is no evidence of a correlation with the K™ K~ invariant mass, a
pattern can be seen with respect to cosfy.

We further check this correlation looking at the variation of [, shape across the Dalitz
plot. In Fig. 6.7 we show the relative variation of the mean and of the r.m.s. for the
[y distribution in bins of the Dalitz plot for sideband events. These plots show that the
shape for the on-resonance events is more jet like along the contour of the Dalitz plot,
while it is more spherical in the central part (I < I3). Also the resolution of this variable
is not constant in the Dalitz plot. In order to have a more quantitative estimate of the
variation of [, distribution we define the statistical significance of the compatibility of the
mean of the [, in a given bin ¢, m;, with the average mean in the whole Dalitz plot, m,

with the quantity:

N(o) = 22 /N, (6.10)

r.m.s.;

where N; is the number of entries in the bin ¢. In Fig. 6.8 the distribution of this quantity

across the Dalitz plot for background events is shown. As this figure shows, even if the



6.3 The Event Selection

159

12mkk
Entries 78544
P 1:vvv‘vvvv‘vvvv‘vvvv‘vvvv‘vvvv‘vaeanx 1.474
= E Meany 0.2733
-1 0.9 RMS x 0.5927
E RMSy  0.09991
0.8— o] o 0
E 3372 75172 0
0.7 0 0
E Integral 7.517e+04

0.6 -~

o) SRS T TN YRR A A S TR AR AR AR

1 4.5

m(K'K) [GeV/c?]

12cosh
Entries 78544
Pl T T T T T T T T T T T T T T T T T [ Meanx 004262
= E Meany 0.2735
-1 0.9 RMS x 0.6196
E RMSy  0.09987
0.8 o] o 0
E 0[78544] 0
0.7 of o] o

Integral 7.854e+04

12mkk
Entries
Mean x

Meany 0.3507

RMS x 1113

RMSy 0.09579

o] o 0

168[20238] 0

0 [

Integral 2.024e+04

20406
2177

0.4
03
0.2
0.1] : E
P P A R A R LN VN BRI S
1 15 2 25 25
m(K'K) [GeV/c?]
12cosh
Entries 20406
s ! Meanx  0.1109
3 Meany 0.3507
- 09 RMS x 0.6706
RMSy  0.09576
08 0 0 0
020408 0
0.7 ol o o
. |Integral 2.041e+04

08 1
cos 6,

06 04 -02 0 02 04 06
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signal Monte Carlo events (left) and continuum events from sidebands of on-resonance

data.
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Figure 6.7: Relative variation of [y distribution in the Dalitz plot for on resonance events
in sideband region. Left: mean relative variation. Right: r.m.s. relative variation.

most of the events on the contour of the Dalitz plot are statistically consistent with the

average mean of [, the central bins are up to 4 o away from the mean. This force us not

to include this variable in the likelihood, but only apply a cut on it. We require F > —2.5
for both B® — KTK-K%(nt7~) and B® — KTK~K°%(#%7%). This selection has been
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Figure 6.8: “Statistical significance” of the compatibility of the mean of [ distribution
across the Dalitz plot with the average mean. The color represents the N (o) compatibility,
as defined in Eq. 6.10, for on resonance events in the sideband region.

chosen in such a way to maximize the statistical significance of the signal, defined as in

Eq. 5.2.

Best Candidate Selection

After applying the full selection to KK~ K2 sub-modes, we select 3091 events for B® —
KTK~KY%7tn™) and 1599 events for B — KTK~K2(n%7°).

The event multiplicity for K*K~K2(xt7~) mode is 1.004 for signal events, while for
KK~ K2(7°7%) is 1.10. Where more than one BY candidate passes the selection criteria
in a given event, the best candidate is taken to be that one with a 77 invariant mass
closest to the K? nominal mass [21]. If multiple candidates share the best K2 candidate,
the B candidate with kaons passing the tightest PID selector is chosen. In case any
multiple candidate still remains, the B® candidate with the best vertex probability from

the B kinematic fit is selected.

Study of Misreconstructed KT K~ K? Events

In a sample of simulated signal events, we associate reconstructed tracks with their Monte
Carlo partners. These candidates can be classified into radiative and signal-cross-feed

events:

e events that have all candidates properly matched, but with a not reconstructed
photon from QED final state radiation, so the total combination fails the truth

matching,
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e all daughters with correct PID, but at least one of them coming from the other B

meson,

e at least one daughter with incorrect PID taken from the other B meson.

The first group has very signal-like mgs and AF distribution and it is evenly distributed
across the Dalitz plane. We merge these candidates with the properly matched signal
events. The other two groups (defined as Self Cross Feed or SXF) have continuum-like
distributions of mgrg and AFE and pile up in the corners of the Dalitz plot. Hence, to
remove a possible bias on our measurement we apply the cuts on the kinematic variables
introduced in Sec. 6.3.2, which significantly reduce the number of these events (to ~ 11%)
while retaining almost all truth-matched signal events (~ 97%). The final breakdown of
the non-truth matched events in the K™K~ K?(7"7~) sub-mode is given in Table 6.1.

Since the fraction of cross feed events in signal decays is smaller than 0.4%, we do not

fraction of fraction of

non-truth matched events all events
all non-truth matched 100% 4.6%
radiative 92% 4.3%
SXF (correct PID) % 0.3%
SXF (wrong PID) 1% 0.02%

Table 6.1: Breakdown of the non-truth matched events in the K+ K~ KY(7"7~) mode.

include these events in the nominal fit.
Misreconstructed signal is much more common in the K™K~ K2(77%) mode, due to
large number of fake K candidates coming from a wrong combination of photons. The

breakdown of misreconstructed events is given in Table 6.2. At high values of my+ -,

fraction of fraction of
non-truth matched events all events
all non-truth matched 100% 29%
radiative 11% 3.2%
SXF (correct PID) 89% 26%
SXF (wrong PID) 0.1% 0.03%

Table 6.2: Breakdown of the non-truth matched events in the K+ K~ K9(7%7%) mode.

the K? is soft, leading to a high fraction of misreconstructed events. The SXF fraction in

bins on the square Dalitz Plot is shown in Fig. 6.9.
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6.3.3 Selection of B - KtK~K?

In order to reconstruct a B® — KTK~ K" candidate, we select a pair of charged tracks of
the event and apply to them the same PID requirements to suppress the pion contribution.
We then combine this pair of tracks to a K? candidate to form the B°. We identify a K?
candidate either as a cluster of energy deposited in EMC or a cluster of hits in two or
more layers of the IFR, not associable with any charged track in the event (as described
in Sec. 5.3).

Because of the presence of a K in the final state, the kinematic of the B meson cannot
be closed: only K? flight direction is measured in the IFR, while the energy measured in
the EMC is not calibrated for a hadron. The procedure in this case is to impose a mass
constraint to the B mass, in order to calculate the K? momentum from the momentum

of the other B daughters (the K™K~ pair). This is achieved using the relation

2
M2 = (EKH« + /P + mi(g> — k- + pice | (6.11)

Applying this B mass constraint, we lose one of the two kinematic variables (mgg), but
we calculate the other one using the computed K? momentum (AF). Since the AF
variable is evaluated after the B mass constraint, its shape is mgs-like. In addition,
it exhibits a very good resolution (about 3 MeV (4 MeV) for EMC (IFR) candidates).
The difference between EMC and IFR is produced by the different angular resolution of
the two cases. AF is peaked at zero for signal events, while it exhibits a phase space
distribution ranging to larger values for events coming from continuum production. AF
distribution for KT K~ K? signal events is shown in Fig. 6.32.

The fact that B — KTK~K? decays have only one kinematic variable reduces the
discrimination power against ¢g background. For this reason, the selection of the events
for B® — KK~ KY has been optimized independently from B® — K+ K~ K?. We require
AFE < 30 MeV, which is a good compromise between a tight cut (to remove the large
background pollution) and the need of a sufficiently wide sideband region (to characterize
the background).

As it has been described in Sec. 5.4, the separation between photons and K candidates
in the EMC become worse at low momenta of the neutral cluster. KK~ KY candidates
with slow K? daughters correspond to events with higher K™K~ invariant mass. For this
reason we choose to optimize the selection separately in the lower and higher invariant

m(K*K™) regions. For consistency with B — KTK~K? selection we divide the sample
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in m(KTK™) < (>)1.1 GeV/c?, the lower being dominated by the ¢(1020) resonance.

In order to suppress the ¢g background we use only the | cos | variable in the lower
mass region, while we use both |cosfg| and the ratio ly = Lo/ Lg of the Legendre mono-
mials elsewhere.

We also require, as it was done for B — KTK~ K9, |At| < 20 ps and oa; < 2.5 ps.

Finally, we maximize the purity of the K sample optimizing the selection of the K?.
This consists of two main issues: the missing momentum requirement (valid for both
EMC and IFR candidates) and the PID of the K based on the cluster shape (only for
EMC events), whose implementation has been described in 5.4.2. We will discuss them

in the following sections.

Missing Momentum of the Event

In order to clean the sample, one can tune the selection in such a way that the transverse
missing momentum of the entire event is consistent with the K momentum calculated
for the candidate. The missing momentum is calculated from all charged tracks and EMC
clusters (not including the K9 candidate) of the event and projected onto the axis of the
K? candidate in the transverse plane. The expected transverse momentum of the K? is
then subtracted from the projection. We will refer to this variable as p?L.... The reason we
use only the transverse component of the missing momentum is to minimize the influence
of the EMC endcap leakage. The pollution coming from semi-leptonic B decays is reduced
by using the projection onto the direction of the K? candidate: since missing momentum
originating from semi-leptonic decays is uncorrelated to the direction of the K? candidate,
it will not bias the projected missing momentum (it can just decrease its resolution). Fig.
6.10 shows the distribution of this projected missing momentum for signal MC events and
on-resonance sideband data for background. The discriminating power of the variable
is less for the IFR because there is already significantly less background in this sample
than for the EMC. Also, incorrectly identifying an EMC cluster as a K will alter the
calculation of the missing momentum in the event, thus accentuating the effect. Since
IFR clusters are not used in the missing momentum calculation, the distribution for signal
events peaks at 0 for [FR-only candidates, while it is shifted for EMC candidates.
Another useful variable, correlated to the missing momentum, is the missing energy
of the event. We define the variable AFE,;, as the difference between the sum of the

measured energy of all charged tracks and all neutrals of the event (not including the
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Figure 6.10: The projected missing transverse momentum minus the expected value for
a K? from signal MC events (solid histogram) and sideband data (dots). (a) EMC can-
didates. (b) IFR candidates.

K? candidate) (F,;s) and the sum of the energies of the two charged kaons which come
from the reconstructed B decay. Since for a photon the energy of the cluster is correctly
calibrated, while for a K? it is not, the mean value of the distribution for signal is shifted
with respect to the background one. This can be seen in Fig. 6.11a.

Last, we use the opening angle between the missing momentum and the K? direction
in the laboratory frame. This variable is expected to peak at small values for true K?’s,

while it presents a tail at higher angles for fake K¥’s (Fig. 6.11b).

(a) (b)

Normalized to onpeak data
3
o
Normalized to oppeak data

200

25 3

7 8 9
AE, (GeV) opneing angle

Figure 6.11: (a) Difference between the total measured energy of the event and the sum
of the reconstructed kaons from the B decay (referred as AFE,;). (b) Opening angle
between the missing momentum and the K? direction in the laboratory frame. (Since for
this variable the shape of EMC and IFR candidates is quite similar, the plot show the
sum of the two categories).
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Since these three variables have a large correlation (see Fig. 6.12), we define a Fisher
discriminant [71] based on these three variables to account for the correlations. We train
two separate Fisher discriminants for EMC and IFR-only candidates. We use signal and
continuum Monte Carlo events as training samples for signal and background, respectively.

The functional relation defining the Fisher discriminant is given by
F = ag+ a1pli + asAEyis + azangle(pmis — K2) (6.12)

where the coefficients for EMC and IFR discriminant are given in Table 6.3.

Coeff EMC IFR
Qo 4.2326 3.48184
a 1.03421 1.45664
as -0.341054 -0.222554
as -0.712522 0.0797307

Table 6.3: Coefficient of the linear Fisher discriminant of K? missing momentum defined
in Eq. 6.12.

We validate the output using an independent sample of signal Monte Carlo events

and sideband data as background. In Fig. 6.13 we show the distribution of the output
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Figure 6.12: Correlation between the missing momentum variables entering the Fisher
discriminant. Left: AE,;s vs. pL. . Center: AFE,,;s vs. opening angle between missing
momentum and K? direction. Right: opening angle between missing momentum and K?
direction vs. pl. .

of the trained linear Fisher discriminant for EMC and IFR-only events for both signal
MC and sideband data events. As a final concern, we observe that a cut on a variable

related to the missing momentum of the event could in principle introduce a bias in the
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lepton based flavour tagging: if we require a large missing momentum in the event, the
probability that this event contains a semi-leptonic decay would increase. Fig. 6.14 shows
the leptonic tagging fraction as a function of the cut on these variables: there is a wide
range for the variable where the fraction does not change. We will check that the final cut

on the Fisher does not bias the leptonic tagging fraction (Section 2.1). We optimize the
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Figure 6.14: Fraction of the leptonic tagging category as a function of (a) the cut on p?,__,
(b) AE,;, (c) opening angle between missing momentum of the event and K? direction.

lower cut on the Fisher maximizing the statistical significance, (as defined in Eqn. 5.2).
In Fig. 6.15 we show the statistical significance as a function of the lower cut on the
Fisher for EMC or IFR candidates. For both EMC and IFR samples we choose a cut of
Fisher>1, having an efficiency of about 86% on signal events, while rejects 65% of the

continuum.
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PID Selection for EMC KB

In order to increase the purity of the selected sample, we also apply the developed PID al-
gorithm for the EMC KV candidates based on the shower cluster shape (Totti selector,
Sec. 5.4.2). This selector is very useful to reject the main background in the EMC, due
to misreconstructed photons (because it has been trained in different kinematic bins), in
particular for K’s coming from B — KT K~ K? decays, which cover a wide momentum
spectrum.

After the rest of the selection for KK~ K? candidates has been fixed, the requirement
on this variable is chosen maximizing the sensitivity to (3, separately in the lower and
higher KK~ invariant mass, using a toy Monte Carlo technique. With this procedure,
we take into account both the statistical uncertainty and the main systematic one, which
is the poor knowledge on the CP asymmetry of the main BB backgrounds (see Sec. 6.4.2).
The total uncertainty on (3, evaluated adding in quadrature the statistical and systematic
contributions, is shown in Fig. 6.16 as a function of the lower cut on the Totti selector
for m(KTK~) < 1.1 GeV/c*.

The optimal cut on the output of Totti selector, 7, is found to be:

e m(KTK™) < 1.1 GeV/c*: T > 0.465
o m(K*K~) > 1.1 G&V/c2 T > 0.500

After the whole selection, the average efficiency is about 25% for events in the lower

mass region, while it is about 10% in the higher mass region. The main difference in
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the two selections comes from the quite different PID purity for the charged and neutral

kaons and the different requirements on the event shape, as can be seen in Table 6.4.

Best Candidate Selection

After the described selection, 22341 K+K~K? events survive. The final multiplicity is
higher than in the K* K~ K2 modes. In fact we find about 2.3 B? candidates reconstructed
per event in a sample of signal Monte Carlo decays. This large combinatorial requires an

accurate best-candidate selection. First, the best K9 is chosen using the criteria based

on EMC and IFR quality:

1. if multiple EMC candidates are present, select the one with the highest cluster

energy;

2. if multiple IFR candidates are present, select the one with the largest number of

layers;

3. if both an EMC and IFR candidate pass the relative filters, the EMC candidate is
selected, as the EMC has a better K? direction resolution than the IFR.

A small fraction (4.8%) of the events has multiple candidates after the best KV selection,

due to different combinations of K™K ~. Then, the best B candidate is chosen as the one
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Selection my+x- < 1.1GeV/c*: € (%) my+r- > 1.1GeV/*: e (%)

reco 62.4 + 0.2 66.5 + 0.2
B > 200 MeV 892+ 0.1 881+ 0.1

| cosOspr| < 0.8 80.1 £ 0.1 -
| cos fspy| < 0.7 - 69.2 + 0.1
ly <0.35 - 80.0 + 0.1

PID: Tight x Tight 94.7 £ 0.1 -
PID: NotAPion x Loose - 63.6 £ 0.1
|At] < 20 ps 06.8 & 0.1 08.1 + 0.1
o(At) < 2.5 ps 95.1 £ 0.1 97.9 £ 0.1

T > 0.465 83.0 £ 0.1 -
7T > 0.50 - 68.1 £ 0.1
Fisher (EMC,IFR) > 1 85.9 +£ 0.1 85.6 £ 0.1
-0.01 < AF < 0.03 GeV 88.0 + 0.1 87.8 + 0.1
Total efficiency 249 + 0.1 9.5 £0.1

Table 6.4: Average selection efficiency for B® — KTK~K? signal Monte Carlo events.
Left: efficiency for lower mass region (m(K+*K~) < 1.1 GeV/c?). Right: efficiency for
higher mass region. The efficiency of each cut is evaluated with respect to the previous
cut.

with the best vertex probability, associated with the B kinematic fit.

We describe the sources of remaining misreconstructed events in the next section.

Study of misreconstructed KT K~ K? Events

As we have shown in Sec. 6.3.2, we study the breakdown of misreconstructed events in
the Dalitz plot. While for the tracks the Monte Carlo truth association is done in the
usual way, this is not possible for K9, because the associator algorithm is based on the
kinematics and the reconstructed K? has not a defined momentum before the B mass
constraint. So we use a criterion based only on the direction of the reconstructed K?.
We define a reconstructed K? truth-matched if its direction lies inside a cone which has
its axis along the direction of the Monte Carlo generated K?, with an opening angle of
50, where o is the angular resolution of the EMC. The angular resolution of the EMC is
a quantity which varies as a function of the K? momentum (Eq. 5.5). Since this is the
nominal angular resolution for a photon at a polar angle of 90°, this criterion could be
very inefficient for K9 candidates. We check that requiring 5 o or 7 o does not change the

fraction of “truth-matched” K? significantly. We distinguish four categories of events:

e truth-matched events
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e non truth-matched events with one of the charged kaons taken from the decay
products of the other B meson. This happens for 0.5% of the events, mostly in the

corners of the Dalitz plot (where the kaons have lower momentum).

e non truth-matched events with a wrong K. This constitutes the most of self cross
feed: 4.5% of the events. This happens mostly in the corner of high K K~ invariant
mass. Even in the case of the neutral K%’s, the separation from background get

worse when the kaon is slow.

e non truth-matched events excluding the previous cases. This includes the case
where one or two charged kaons have the wrong PID. This accounts for a very small

fraction of self cross feed (0.5%).

The distribution of these different categories of self cross feed over the Dalitz plot are
shown in Fig. 6.17. In Fig. 6.18 the AFE distributions for truth-matched events and for

mis-reconstructed events of the three different categories is shown.

6.3.4 Efficiency Over the Dalitz Plot and Related Systematics

In Sec. 6.3.2 and 6.3.3 we have reported the selection criteria for reconstructing B° —
KTK~K? and B — KTK~K" candidates, respectively. These criteria are chosen in
order to maximize the sensitivity to the CP asymmetry parameters, reducing the main
backgrounds. The efficiency of the final selection is studied across the squared Dalitz plot
(mg+x- and cosfp) using a signal Monte Carlo sample with a flat Dalitz distribution,
in order to equally populate all the regions of the phase space. The squared Dalitz plot
is binned in 20 bins in mg+ - and 20 bins in cos 0.

For the systematics evaluation due to tracking and K2 and K? reconstruction, the
efficiency over the Dalitz plot has to be weighted according to the tracking efficiency and
K? and KY reconstruction.

In particular, we have studied possible differences between data and Monte Carlo effi-
ciencies for K? reconstruction using data control samples (see Sec. 5.5). The corrections,
computed as a function of the momentum and the direction of the K, are translated as a
function of the position in the Dalitz plot. The result is the distribution of the corrections
in Fig. 6.19. We then apply the corrections to the efficiency distribution over squared
Dalitz plot obtained from Monte Carlo.
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Figure 6.17: Distribution of signal Monte Carlo events for truth-matched events (top left),
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Figure 6.18: AFE distribution of truth-matched events and self cross feed events. The
other component of the self cross feed is too small to be visible in this plot.
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Figure 6.19: Efficiency corrections 5‘}?2”/5%5 as a function of Dalitz plot position, as

evaluated from D° — K% 7~ control sample.

The distributions of corrected efficiencies in bins of the squared Dalitz plot are shown
in Fig. 6.20 together with the distribution of errors due to finite Monte Carlo statistics
and PID efficiency corrections, for B® — K™K~ K2(rtn~), B® — KTK~K%(r°7°) and
B — KTK-K?.

6.4 Background in the Dalitz Plot

In order to perform the maximum likelihood fit, which is described in Sec.6.5, we param-
eterize the shape of the Dalitz plot for the different categories of background events. We
model the probability density function of Dalitz plot for continuum and BB background
as a variable-binning 2D histogram PDF. The non uniform binning is made in order to
have higher granularity around the main expected resonances: values of mpg+x- where

the ¢(1020) and the D° peak, and the region around |cosfg| ~ 1.

6.4.1 Continuum Background

We fill the 2D histogram with events taken from mgs, AF sidebands for B — K+ K~ K
and from AFE sidebands for B® — KTK~K?.

The binning of the histogram and the PDF for continuum B° — K+*K~K? which
has the highest background, is shown in Fig. 6.21. In Fig. 6.22 we show the projection of

the 2D histogram on mg+x- and cosfy.
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6.4.2 BB Background

Another source of background comes from other decays of B mesons, which can mimic a
B? — Kt*K~K° decay, if they contain the same three particles of the signal in the final
state, and at least another particle, having low momentum, which is lost in reconstruction.
In order to identify the complete list of these decays, we apply our reconstruction criteria
on a sample of generic BB decays, simulated using Monte Carlo technique. With the
knowledge or a reasonable assumption of the branching fraction of these decay modes, we
can estimate the breakdown of the different decays different from signal one into our final

dataset.

Charmless B Decays

Background from other charmless B decays for B — K+ K~ K" consist of B® — K*K~K°h,
where h is a charged or neutral pion omitted from reconstruction (the most frequent is the
decay B — K+K~K*, with K* — K°r). The efficiency for this kind of BB background
is very sensitive to the allowed window for the AFE variable. In fact, when a particle is
not reconstructed, its energy is lost, and as a consequence AF is shifted to lower values.

The main source of problems related to the inclusion of these events comes from the
fact that their topological behaviour is identical to the case of the signal events (because
they also come from a decay of a B meson), but their CP asymmetry is different (and
in most of cases unknown). This means that a BB component in the fit introduces a
dilution in the determination of the signal C'P asymmetry. So this would introduce a
large systematic uncertainty.

For B® — K™K~ K this background is completely removed with the tight AE cut
described in Sec. 6.3.2, which, at cost of a small increase in the statistical error, avoids a
larger systematic error due to the unknown BB CP content.

For B' — KTK~K?, an analogous cut is not possible, since AE is the only kine-
matic variable defining the B meson. This background cannot be removed from the
fit and the unknown CP asymmetry of the BB background will constitute one of the
principal systematic uncertainties. This uncertainty has been taken into account in the
optimization of the selection described in Sec. 6.3.3. In particular, we identify neutral
B decays: B — KK~ K*(K%), B - K*"(Kt7°)K~K? and charged B decays:
BT — KTK-K*"(K"), Bt — K* (K 7°)KTK?. BABAR Collaboration has recently
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measured the branching fraction: B(BT — K*TK~K™1) = (36.8 £3.4+3.5) x 107, while
only an upper limit exists on the neutral B decay: B(B® — K**KTK~) < 6.1x107* [21].
Since this upper limit does not give a reliable estimation of the real contribution, we
assume also for the neutral modes a branching fraction equal to the one measured for
charged mode, assuming SU(3) symmetry. In Fig. 6.23 the distribution of these events in
the Dalitz plot is shown. These events have been generated assuming a flat distribution
in the Dalitz plot. The observed loss of the edge at high K*K~ invariant mass can be
attributed to the effect of the requirement on the minimum of the calibrated energy asso-
ciated to the K? candidate and the cut on 7', which removes the very slow K?’s of these

four body final states.

a
=
o

MAK'KD) (GeVIe?))

N

T Ll
0 5 10 15 20 25
m2(K*'K) (GeV/c??) m(K'K) (GeVic?)

Figure 6.23: Dalitz plot distribution (left) and squared Dalitz plot distribution (right) of
peaking BB Monte Carlo events.

A purely phase space model for B — K™K~ K* is not a realistic model for this three
body decay. A significant contribution is expected to come also from resonant ¢ K*. The
#(1020) region of the K™ K~ invariant mass is also the one with the highest K efficiency
(hard K?’s). The branching fraction of B® — ¢K*(892) has been measured in the quasi-
two-body approximation?, together with the fraction of longitudinal and transverse polar-
ization. The measured branching fraction [72] is B(B® — ¢K*(892)) = (9.5 4+ 0.9) x 107°
and the polarization fractions are f = 0.52 £0.05 and f, = 0.22 £ 0.05.

2The quasi-two-body approximation consists in considering the KK ~ pair as a quasi-particle (the ¢),
if its invariant mass lies in the region which includes the ¢ spectrum in three standard deviations. The
same can be done for the K7 system forming the K*. Then the B can be considered as decaying in two
particles, the ¢ and the K*.
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Another possible source of B background is B — ¢K*(1430). This decay has been
observed by BABAR, and the branching fraction is [72]: B(B® — ¢K*(1430)) ~ 8.2 x
107%. We mix the ¢ K* Monte Carlo events weighting them by the measured polarization
fractions in order to have the correct helicity distribution.

Additional contribution comes from the BT — ¢K*t decays, having [73] B(BT —
GK*t) = (8.30 +0.65) x 1076,

Other sources of resonant K+ K~ K* modes which contribute to the peaking B back-
ground are fo(980)K™*, fo(1500)K* and x.K*. Since these single modes have not been
measured, we use the branching fraction of BT — KK~ K** and the fit fractions of the
single resonances entering the Dalitz plot of BT — KT K~ K™ [76].

The reconstruction efficiency of these decays is evaluated using high statistics Monte
Carlo samples for these specific decay modes. The reconstruction efficiencies, the [], B;
and the expected number of events in an integrated luminosity of about 350 fb™! are

summarized in Table 6.5. We build a Monte Carlo cocktail weighted according to the

Mode # events [[.B; (107%) ¢ (%) N
BY — $(1020)K(802), 12000 1.23 68 28
BY — $(1020)K*0(892) 12000 0.33 42 48
B® — ¢(1020) K*0(1430) 10000 1.35 5.0 24
B® = f,(980)K*° 12000 0.34 34 4.0
BY — £,(1500) K* 12000 0.31 38 4.2
B — x oK*° 12000 0.15 2.5 1.3
B - K*K-K*(K%x%) NR 57000 5.9 23 48
B® — K*(K*7")K-KY NR 57000 9.0 22 69
B = g(1020) K" 12000 2.07 60 44
Bt — fo(980) K** 12000 0.51 4.5 8.0
Bt — fo(1500) K*+ 12000 0.47 4.9 8.1
BT — oo K*T 12000 0.23 3.0 2.4
Bt - K*K-K**(K%t) NR 57000 9.0 25 79
Bt — KO(K-7H)KVKY NR 57000 12.0 25 105
Tot 430

Table 6.5: Branching fractions, reconstruction efficiencies and expected number of events
from charmless B decays expected in 350 fb™' for B® — KK~ KY. These events form the
peaking component of the B background for K*K~K?. [[, B; is the branching fraction
of the decay multiplied by the sub-B, which for ¢K*°(892) contains the fraction of || or
1 polarization. The fy(980)K*, fo(1500)K™* and y.K* sub-B contain the fit fractions
measured in the K™K~ KT Dalitz plot [76].

yields reported in Table 6.5 to parameterize the charmless peaking component of the B
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background for B® — K*K~K?. This constitute an approximation because this sum of
events is made incoherently, thus neglecting the existing interference phases. Anyhow,
since this background is smaller than the signal and it has different kinematics, this
approximation is acceptable.

As for the continuum background (see Sec. 6.4.1), we describe the Dalitz plot PDF
using a 2D histogram. We use the same binning structure as the continuum one, since
the main structures (like the ¢(1020)) are present also in this case. The 2D PDF is shown

in Fig. 6.24, with the projections onto the mg+x- and cos gy shown in Fig. 6.25.

DP BBbar PDF

35 4 4.5
K*K mass (GeV/c?)

Figure 6.24: Peaking B background square Dalitz plot PDF for B® — KTK~K?. The
model is a 2D histogram PDF with the same binning used for the continuum background.
The weights come from the histogram filling with the weighted Monte Carlo cocktail
whose components are listed in Table 6.5, shown with a log;, scale.

Charm B Decays

The remaining B background is dominated by the signal-like and combinatorial b —
¢ decays. A breakdown of dominant decay modes is shown in Table 6.6. The main
contributions comes from signal-like DT, D} and x.o decays. We include these b — ¢
decays in our Dalitz plot model as non-interfering Gaussians (D’s) and an interfering
Breit-Wigner (). While the kinematic variables are identical to signal events, B — DK
decays can have slightly different At distribution from the true signal, due to the displaced
D-meson decay vertex. We fit the lifetime of 1.5 thousand exclusive B — DK~ decays

assuming the signal At model and obtain 7px = 1.61 + 0.05 ps (Figure 6.26) which is
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Figure 6.25: Projections of the peaking B background 2D histogram PDF for B —
K*K~K? shown in Fig. 6.24. The dots are the Monte Carlo cocktail events, while the
line is the PDF projection. Top: Kt K~ invariant mass, bottom: cos 8 projection. Left:
events for m(KTK~) < 1.1 GeV/c?, right: events for m(K+tK~) > 1.1 GeV/c*.
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consistent with the BY lifetime. We expect 10 times less of combined B® — DK~ and
B — DK~ events so any difference in lifetimes between these decays and the charmless
signal decays cannot be resolved in data; we use the nominal nominal B° lifetime for all

decays into K+ K~ K" final states.
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Figure 6.26: B — K™K~ K%(7"7~) mode: At distribution for B® — DTK~ decays.

Combinatorial B5 Background

Distributions of the kinematic variables mgg and AFE for the remaining, combinatorial
b — ¢ background are very similar to those for continuum events as shown in Fig. 6.27
for B® — KTK~K%(7t7~), while the distribution of the Fisher discriminant (not used
in this fit) is closer to signal events (since it depends from the rest of the event, not
by the reconstructed B). The At distribution has only a nonzero-lifetime component
with the resolution similar to signal events. Based on generic BB Monte Carlo studies,
we expect this combinatorial background to make 3-4% of the all background events,
both for B® — K*K~K? and for B® — KtK~K?. However, due to similarities in the
kinematic PDF’s, we are not able to clearly separate the combinatorial b — ¢ background
from the continuum events with events being exchanged between these two combinatorial
categories. We perform a fit with 193 combinatorial BB events and observe that 11.4 +
3.4% of these events leaked into the signal category for B — KTK~K°(n*7~) channel.
This means that O(1%) of the signal yield in data comes from B background. In order
to completely minimize potential cross feed, we include a combinatorial BB background
component in the likelihood. Due to the low number of expected events (0.29/fb™") and
the low statistics of the MC sample, we use the same PDF parameters for all tagging

categories.
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Figure 6.27: B — KTK~KY(w*7~) mode, events in generic BB MC which pass all
selection cuts, with signal events removed: (a-c) mgs and AE, (d) At and (e-g) m(KTK™)
mass and cos 0.
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For the KTK~K?(n%7%) sub-mode, combinatorial backgrounds from B decays are
mostly from events with multiple 7%’s which are reconstructed into a fake K2. De-
spite the cut on AF being wider, there is only a negligible possibility of cross feed from
B — KTK~K°h (peaking) modes. In the final dataset, we expect about 50 events of
combinatorial B background. So, such a component will be included in the fit. In this
case, a correlation arise between the kinematic variables, so we model them with a 2D
histogram PDF filled with the selected events in the Monte Carlo of generic B decays. We
show this PDF in Fig. 6.28, together with the usual 2D histogram modeling the Dalitz
plot for this component.

For the K™K~ K? sub-mode, combinatorial background arise from misreconstructed
K?’s, having a distribution of AE which is continuum-like. From the study of Monte
Carlo for generic B decays, we estimate a number of about 800 events in the final dataset.
In Fig. 6.29 we show the projections of the Dalitz plot for these events. This compo-
nent is included in the fit also for KTK~K?. Similar considerations to the ones on
KTK~KY%#t7™) sub-mode can be made about the interchange between continuum and
combinatorial BB events. Since the amount of background is larger, to simplify the fit
we fix the yield for this component to the expected number of events. We checked with
toy Monte Carlo technique, described in Sec. 6.7.1, that this does not introduce any bias

in the signal parameters.

6.5 Maximum Likelihood Fit

The signal parameters, both the yields for all the B — K+K~K° sub-modes, and the
isobar coefficients which represent the fit fractions of each resonance and the associated
CP asymmetry, are extracted using a maximum likelihood fit technique. This strategy
has the advantage to extract signal parameters simultaneously to the background ones,
thanks to the loose selection which keep wide sidebands, in this way avoiding biases in
the signal. Furthermore, having a loose selection, this technique allows to keep a higher
efficiency with respect a simple cut-and-count analysis, where the signal is extracted in a
tight signal window. The price to pay is computational, since, having typically more than
one order of magnitude of background events, the fit procedure, above all the one of the
Dalitz plot with complicate normalizations involved, it’s much slower.

The main ingredients of a maximum likelihood fit are the following:
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Decay mode B-107% Ref. Relative B¢ (%) Comment
KTK-KY 8.4 [21] 100 Sig. model
D (KK KT 039 [21] 38 Sig. model
D~ (K2 )K™* 1.9 [21] <04 Sidebands/generic B
D~ (KK~)n* 5.7 [21] <13 Sidebands/generic B
D~ (K2r~)n* 28.0 [21] <0.1 Sidebands/generic B
DY KTK™)K? 0.067 [21] 0.8 Sidebands/generic B
DOYK*7)K? 0.66 [21] <0.2 Sidebands/generic B
DO(rtr ) KO 0.024 [21] <0.1 Sidebands/generic B
D7 (KK™)K™ 0.47 [21] 4.5 Sig. model
D7 (KK™)n* 0.35 [21] <0.1 Sidebands/generic B
D; (K2 )K™* < 0.013 [21] <0.1 Sidebands/generic B
D (K2r )7t < 0.009 [21] <0.1 Sidebands/generic B
J/IW(KTK™)KY 0.007 [21] <0.1 Sidebands/generic B
PY(2S)(KTK™)KY 0.051 [21] 0.6 Sidebands/generic B
Xeo( KTK™)K? <1.0 [21] <12 Sig. model

Table 6.6: B meson decays into charm and charmonium final states under consideration

in the background study. The B includes all sub-decay branching fractions.

Total Generic BB PDF
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Figure 6.28: B’ — KK~ K%7°7%) mode, events in generic BB MC which pass all
selection cuts, with signal events removed: (left) mgs and AE plane, (right) m(KTK™)
mass and cos g plane.
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Figure 6.29: B — KTK~K? mode: projections of the Dalitz plot distribution of com-
binatorial B background. Left: mg+g-. Right: cosfy. The dots are the Monte Carlo
events, while the line is the PDF projection.

1. All the variables entering the likelihood function are assumed to be uncorrelated.
Under this hypothesis, the likelihood can be written as a product of the PDF’s of the
different variables. Otherwise, a more complicated multi-dimensional PDF is needed
(as an example the Dalitz plot PDF and the mgs-AFE 2D PDF for Kt K~ K9(7'7")
combinatorial BB background);

2. the most of background parameters are extracted from the fit simultaneously to
the signal ones. This is possible because of the presence of the wide sidebands,
which allow the extrapolation of the background shape in the signal region. This
avoid systematic uncertainties on the background shape, typically with a negligible

increase of the statistical error;

3. the CP asymmetry is extracted as a function of the time distance between the decays
of the two B mesons in the event. This information is used in the likelihood using

At/o(At), namely the pull of the At variable;

4. the maximum likelihood is extended. This means that the likelihood function in-
cludes a Poisson factor in order to conserve the total number of selected events and
to take into account the fact that the number of events produced comes from a

Poisson process;

5. the fit is performed unbinned. This allows not to lose any information in binning the
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variables entering the likelihood function, in case of small yields (which is typical

for charmless B decays).

With these considerations, the general form of the likelihood is

N N@pec

L=eN( NHZ JPJ (6.13)

=1 j=1

where N; is the number of events for one of the Ny, species of events (signal, ¢ back-
Nspec

ground or BB backgrounds -peaking and combinatorial-) and N’ = Z N;, N is the

total number of selected events and Pij is the product of the PDF’s of the dlscrirninating
variables used in the likelihood for the event ¢ under the hypothesis to belong to the specie
],

In the case of B — K+ K~K° analysis, the PDF is formed from these observables:

P = P(mEs) . P(AE) . PDp(mK+K—, COS QH, At, qmg) X R(At, UAt)- (614)

where g4 is the flavour of the initial state. We will describe our model for the selec-
tion variables and the one for the time-dependent Dalitz plot, Ppp, in the Sections 6.5.1
and 6.6, respectively. The Ppp PDF is convoluted with R, which is the standard At
resolution function whose parameters are evaluated in exclusive B decays into final
states with a charm meson as in CP-asymmetry measurements in J/¢K? decays [37],
(see Sec. 2.2.4). For the B® — KK~ K? sub-mode, the mgg variable does not enter the
likelihood function defined in Eq. (6.14).

We checked the correlation between the likelihood variables and found all of them
to be small for signal component (pure phase-space Monte Carlo sample), the largest
one being between mgg and AE (13%). We report them in Tables 6.7, 6.8 and 6.9 for
KTK-KYntn™), KTK-K3(7°7%) and K™K~ K?, respectively. The correlations in the

background events data are even smaller.

6.5.1 Parameterization of Selection Variables

We parameterize signal PDF’s using unbinned maximum likelihood fit on the signal Monte
Carlo samples of the three sub-modes. The kinematic variables mggs and AFE for all the

sub-modes are parameterized using the same function (labelled as Cruijf f function in
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Variable | mgs AFE mg+xg-  cosfy At
MEes 1 -0.13 0.001  -0.002 0.03
AFE 1 -0.03 0.001 -0.0001
MK+ K- 1 -0.0005 -0.0003
cos O 1 -0.0005

Table 6.7: KTK~K2(7*7~) mode: Correlations between ML fit observables in phase-
space signal MC with selection cuts applied

Variable | mgs AFE mg+x- cosfy At
MES 1 0.03 -0.05 0.0008 0.008
AFE 1 -0.009 0.001 -0.004
MKg+K- 1 -0.01 -0.001
cos O 1 -0.002

Table 6.8: K*K~ K%(7°7%) mode: Correlations between ML fit observables in phase-space
signal MC with selection cuts applied

Variable | AE mg+g- cosBy At

AFE 1 -0.016  0.001 -0.006
M+ K- 1 0.029 0.003
cos O 1 0.004

Table 6.9: Kt K~ K? mode: Correlations between ML fit observables in phase-space signal
MC with selection cuts applied
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the following), which is a modified Gaussian including an exponential tail:

(x —m)*

fCruijff =€exp | — (615)

20% 4+ ag(x —m)?

where the + (—) sign corresponds to z > m (x < m) region. The mgs and AE dis-

tributions for KTK~K9(n*7n~) and KTK~K%(7°7%) are shown in Fig. 6.30 and 6.31,

respectively.

~ gOOET T —_ T R R R R IR
> F E > 4005 + E
= = [ E B
@ 700 ] O g50E E
i 600 E 8 . F ¢ E
® F E S 300 3
- — o c |
8, 500E 1 = 250 E
S 400 E @ 2000 4 E
~ C | c c ]
o 300 E € 150F E
c C 7 L E B
g 200E E 100 E
] C i E B
100 = 50 =
E | PSS S SRR BT | | E :"‘\\‘\\\‘\\\‘\\\‘\\\‘\\ 5|

&26 5.265 5.27 5.275 5.28 5.285 5.29 5.295 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
mgg (GeV) AE (GeV)

Figure 6.30: K™K~ K2(7"7~) mode: (left) mgs distribution from signal MC, (right) AFE
distribution from signal MC. All distributions are described with the Cruijff function.
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Figure 6.31: KTK~K2(77°) mode: (left) mgg distribution from signal MC, (right) AF
distribution from signal MC. All distributions are described with the Cruijff function.

Since, as we have discussed in Sec. 6.3.3, the AFE distribution for K K~ K? candidates
has different resolution for IFR or an EMC K? samples, we keep the two components
separate, associating them to different PDF’s, but forcing the CP parameters to be the
same. We show the distribution of Monte Carlo events with the PDF in Fig. 6.32.

The decay BY — J/i K?, which proceeds through b — c transition, has a considerably

higher branching ratio [21] than our charmless decay, then it can be used as a control
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Figure 6.32: Distribution of AE for signal Monte Carlo KK~ K" events with the Cruijff
PDF superimposed. Left: EMC B candidates. Right: IFR B candidates.

sample for the determination of AFE. In order to check that we can use this decay as a
control sample, we checked on signal Monte Carlo samples that K™K~ K? and J/¢K?
events have consistent AF distributions. Even if the number of signal events is con-
siderably high, the purity is not sufficient to determine all the parameters of the signal
Cruijff PDF. We take the a4 parameters of the Cruijff function of Eq. 6.15 from a fit
to signal Monte Carlo events, and fit the mean m and the resolution parameters oL on
BY — J/YK? events.

We reconstruct J/1¢ candidates both from ptpu~ and eTe™ pairs, requiring tight PID
selectors on the leptons in order to reduce the combinatorial background. We also require
the dilepton mass to be within [3.0;3.175] GeV/c?. The most of background in this way is
made by J/¥X (inclusive J/1) coming from B-mesons decays, which we parameterize in
a similar way than our continuum. We show in Fig. 6.33 the fit to the B® — J/¢ KY EMC
and IFR-only events, and we report in Table 6.10 the parameters of the Cruijff function
extracted by this fit and which we use for B® — K™K~ KY signal PDF.

Parameter EMC [FR-only
m —1.0449 + 6.46 MeV 0.40 £1.17 MeV
o_ 3.53 £ 3.11 MeV 3.73+£0.70 MeV
oL 2.93 £0.95 MeV 3.96 + 1.38 MeV
o fixed fixed
oy fixed fixed

Table 6.10: Parameters of the Cruijff function of Eq. 6.15 used to parameterize signal AF
extracted to a fit to B® — J/9K? events reconstructed on-resonance dataset.
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Figure 6.33: AFE distribution for B® — J/¢¥K? in on-resonance events with the result
of the fit superimposed. Left: EMC events. Right: IFR-only events. Continuous curve
represent the total fitted PDF, the dashed line the total background and the dotted line
the non-.J/1 background.

All the parameters of the background PDF’s are fitted on data together with the signal
ones we want to extract. We parameterize mgg for K™K~ K? and AF for KT K~ K? with
a phase space ARGUS function (Eqn. 5.11).

The ARGUS function for K™K~ K? has the phase space reflected with respect to the
KK~ K? one (as for B — J/i) K? events). Since the purity of the sample depends on
the tagging category (being larger for leptonic category and worse for untagged events)
we allow the slope parameter & of the phase space function to be different for the different
tagging categories. We parameterize the continuum AF for KK~ K2 with a linear shape.

The combinatorial B background for K™K~ KY(n*t7~) mode is parameterized with
an ARGUS function for mgg and with a linear shape for AE with the parameters taken
from selected generic BB Monte Carlo and with Their distributions look very similar to
those of the continuum (see top plots in Fig. 6.27).

Because of the correlation between mgg and AFE in combinatorial B background events
for K*K~K2(7°7") mode, we use a 2D histogram PDF in this case (see left plot of
Fig. 6.28).

For Kt K~ K mode, we use an ARGUS function to describe both combinatorial and
charmless B background AFE. Since we found that the shape for the latter is different in
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EMC and IFR events, we separate the two PDF in the fit, while we use a common ARGUS

shape for the combinatorial background. The distributions are shown in Fig. 6.34.
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Figure 6.34: Top: AF distribution of charmless B background for K+ K~ K? mode. EMC
candidates (left) and IFR candidates (right). Bottom: AFE distribution for combinatorial

B background (common for EMC and IFR events). All distributions are parameterized
with an ARGUS function.

6.5.2 Parameterization of Background At

The parameterization of signal At has been already described in Sec. 2.2.4.

We use an effective parameterization of At for the continuum background. We allow

the presence of a zero-lifetime (prompt) term with fraction of f,—y, and a term with a

finite lifetime, 735. The total PDF is given by

flav
BG

(1 - fT:O)

freo 8(AD) 3 (14 m(1 —2uw,0)] +

e*‘At‘/TBG

(6.16)

14+ m(1 —2w,~)]

where f._g is the prompt fraction, w,—y and w,~q are “effective mistag rates” for prompt

and lifetime fraction, respectively; m is £1 for unmixed/mixed events. In the nominal
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fit, we float the prompt fraction, mistag rates in each of the tagging categories, and the
lifetime for all events. The resolution function for the continuum background is composed
of three Gaussians, but we fix the mean and width of outlier Gaussian to 0 and 8 ps,
respectively.

The B-background component (both peaking and non peaking) has in principle CP
asymmetry for the fraction of events which come from neutral B decays and which have
a defined tag. We parameterize the lifetime part of At resolution of the B background
as for the signal events, but we also include a prompt part as for continuum background.
The prompt part should account for tracks associated to reconstructed B coming from

both the B-meson decays. The time evolution is explicitly given with

e_|At|/TBO

crP -
peak T fT=0 + (1 - fTIO) 4TBO (617)

X (14 ¢Spear SIN(AMgAL) + Cpear cos(AmgAt)) .

The prompt fraction depends on the tagging category, being smaller for leptonic one and
increasing for less pure categories. The lifetime and mixing frequency of the peaking
background is fixed to B® nominal values. Tagging dilution and At resolution function
are taken from signal BReco events. The CP content of the peaking and non peaking
background is unknown, because they are a mixture of both charged and neutral modes.
The charged modes can show only direct CP asymmetry, while the neutral ones can also
produce CP violation in the interference between mixing and in the decay. Because of
that, in the nominal fit we fix S and C parameters of the B background to be both 0,
and we vary them uniformly from -1 to +1 and take the largest difference in signal 3 as

the systematic error.

6.5.3 Summary of the Maximum Likelihood Function

In Table 6.11 we report the complete list of the parameterizations of the PDF’s which
define the likelihood function. We also summarize the splitting rules and the samples

used to determine each parameter.

6.6 B'— KtK K" Dalitz Plot Model

We describe signal B — K™K~ K° decays in the time-dependent Dalitz plot using the

isobar model, described in Sec. 3.6. Amplitudes are parameterized using polar coordinates,
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as defined in Eq. 3.55. With these ingredients, the amplitude A (A) for the decay B® —
KT*K-K° (B - K-K*K") can be written as a sum of decays through intermediate

resonances:

A = Zcr(l + b, )elOrtorth) g and (6.18)

r

A =) (1 —b)e O f (6.19)

T

The parameters ¢, and ¢, are the magnitude and phase of the amplitude of component
r. We allow for different isobar coefficients for B® and B° decays through the asymmetry
parameters b, and 6,. The parameter 3 is the CKM angle 3, coming from B°-B° mixing.
The function f, = F,. x T, X Z, describes the dynamic properties of a resonance r, where
F, is the form-factor for the resonance decay vertex, T, is the resonant mass-lineshape
(Sec. 3.3), and Z, describes the angular distribution in the decay (Sec. 3.2.3 and [45, 46]).

Our model includes the ¢(1020). For the scalar decays included in our model (f5(980),
Xo(1550), and x.0), we use a constant form-factor. In this case we use the Blatt-
Weisskopf centrifugal barrier factor F, = 1/4/1+ (Rgq)? [45], where ¢ is the daughter
momentum in the resonance frame, and R is the effective meson radius, taken to be
R =15 GeV (0.3 fm). We omit a similar centrifugal factor for the B® decay vertex
into the ¢ K intermediate state since its effect is negligible due to the small width of the
¢(1020) resonance.

The angular distribution is constant for scalar decays, whereas for vector decays Z =
—44 - p, where ¢ is the momentum of the resonant daughter, and p is the momentum of
the third particle in the resonance frame. We describe the line-shape for the ¢(1020),
Xo(1550), and x. using the relativistic Breit-Wigner function (Eq. 3.27). The mass-
dependent width is given as I(my+x-) = I (/)" (e /mycx-) (Fo(q)/ Fr(ar)),
where L is the resonance spin and ¢ = ¢, when mg+x- = m,. For the ¢(1020) and x.
parameters, we use average measurements [21].

The fo(980) resonance is described with the coupled-channel (Flatté) function (Eq. 3.40),
where the coupling strengths for the KK and 77 channels are taken as g, = 0.165 £
0.018 GeV/c?, gr/gr = 4.21 £0.33, and m, = 0.965 + 0.010 GeV/c? (from a BES experi-
ment measurement [79]).

The X(1550) is less well-established. Previous Dalitz plot analyses of BT — K*KT K~ [75,

76] report observations of a scalar resonance at around 1.5 GeV/c?. The scalar nature has
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been confirmed by partial-wave analyses [77, 76]. However, previous measurements report
inconsistent resonant widths: 0.145 + 0.029 GeV/c? [75] and 0.257 + 0.033 GeV/c? [76].

Branching fractions also disagree, so the nature of this component is still unclear [78]. In

our reference fit, we take the resonance parameters from Ref. [76], which is based on a

larger sample of BB decays than Ref. [75], and consider the narrower width given in the

latter in the systematic error studies.

The summary of used components is given in Table 6.12.

Resonance Amplitude Parameters Reference

5(1020) RBW m = 1.010456 Gev/& PDG
[ = 0.00426 GeV/c? 21]
RBlattWeiss =15GeV !

f0(980) Flatté m = 0.965 GeV/c? BES
gr = 0.165 GeV/c? [79]
gr = 0.695 GeV/c?

Xo(1550) RBW m = 1.539 GoV/ BT SKTKTK-
' =0.257 GeV/c? [76]

(KTK-K%)xr EXP a=0.14 floated

Xeo RBW m = 3.41519 GeV/c? PDG
[ = 0.0101 GeV/c? 21]

D* NIG m = 1.8694 GeV/c? MC
o =0.0067 GeV/c?

D* NIG m = 1.9683 GeV/c? MC

S

o = 0.0067 GeV/c?

Table 6.12: List of Dalitz plot components: relativistic Breit-Wigner (RBW), non-
interfering Gaussian (NIG), single-pole coupled-channel (Flatté) and exponential (EXP).

6.6.1 Non-resonant Amplitude

As we briefly discussed in general in Sec. 3.5, in addition to resonant decays, we include

non-resonant amplitudes. Since the existing theoretical models do not reproduce well the

experimental features on data, we rely on a phenomenological parameterization [75] and

describe the non-resonant terms as

Anr = <612€i¢12€7am%2 + ¢y3eiP1 M 4 6236"@36’”””%3) (14 byg) - 'PHNR) - (6.20)

and similarly for Ayg. The slope of the exponential function is consistent among existing

measurements in charged B decays into three kaons [75, 76], and we use a@ = 0.14 £+

0.02 GeV 2.
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For the systematic studies associated to the non-resonant modeling, we adopt the
theoretical model suggested in [26]:
1 ) [ <512>:|1
- 2. 1 il 6.21
Jor X {512 + S%J S12 108 e ( )

where A ~ 0.3 GeV.
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6.7 Full Dalitz Plot Fit

The fit strategy is based on three steps:

1. determine the parameters of the Dalitz plot model fitting the B® — K™K~ K%(7 7 ™)
dataset, which has the highest statistics and the best purity;

2. add the other two modes, B® — KK~ K2(r7%) and B — KTK~K?, to determine
the CP asymmetry. In this step, we assume that all amplitudes have the same CP

asymmetry parameters;

3. measure CP asymmetry parameters for components with low KK~ invariant mass
with a reduced model-dependence from the rest of the Dalitz plot (in fact, this region
is dominated by only two resonances, ¢(1020) and fy(980), while the contribution
of X(1500) and non resonant can be considered negligible). In this case, we fit for
separate CP asymmetry associated to the most significant resonances. This fit will

be described in Sec. 6.8.

6.7.1 Validation Studies

In order to validate fit performances and to check for the absence of any bias in the fit,
we perform a toy Monte Carlo validation, which consists in generating and fitting events
according to the likelihood function we want to use in the nominal fit. For the values of
CP asymmetry parameters, we assumed Standard Model values (which means no direct
CP asymmetry Acp and By = Bsnr). This is equivalent to set to zero the asymmetry in
amplitude (b) and in phase (0) (see Eq. 3.55).

Signal and background yields are generated experiment by experiment using Poisson
distributions with yields and background parameters centered at the values we expect to
find in data.

We define the pull for the parameter P; as the quantity

Pf’it . Pgen
pull(P) = ——— (6.22)

i
where P/" is the fitted value, o; is the associated error, and P?" is the value used in
generation. In case of unbiased fit and with sufficient statistics, the pull variable should
follow a Gaussian distribution with mean consistent with zero and a standard deviation

consistent with one.
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Name Fitted Value
nSigTot_CPKKKs  878.9 £ 35.7
nBkg_{KaonII} 302.9+19.2
nBkg_{KaonI} 137.3+£12.8
nBkg_{KaonPion} 265.9+£17.7
nBkg_{Lepton} 7.09 +4.63

nBkg_{Notag} 837.3+31.1

nBkg_{Other} 2574+ 17.2
nBkg_{Pion} 334.6 +19.9
nBBkgTot_np 69.7 £ 23.3

Table 6.13: KTK~ K2 mode: Results for the signal and background yields. nBkg stands
for number of continuum background events, while nBBEkgT ot stands for the number of
combinatorial (non-peaking) BB background events.

In Fig. 6.35 we show the pulls on the signal and background yields (the latter split by
tagging category), while in Fig. 6.36 we show the pulls on isobar amplitudes and phases.
All these toy Monte Carlo tests show that the likelihood fit is able to extract the signal

parameters from data without any significant biases.

6.7.2 Fit Results for Isobar Amplitudes and Phases

We perform multiple maximum-likelihood fits to data sample. In each fit we randomize
initial parameters in order to look for local minima of likelihood in the entire parameter
space.

The complete list of the fitted yields is shown in Table 6.13. We find a signal yield
of 879 + 36 events for B® — KTK~K?. These results have only a small dependence on
the choice of Dalitz plot model and the set of initial parameters. We treat differences as
a systematic error.

In Fig. 6.37 we show the fit results on the selection variables mgs and AFE on the
on-resonance dataset. For each component of the likelihood (signal, continuum and BB
background) we apply the ;Plot event-weighting technique [80].

The fraction for each resonance r is computed by the isobar amplitudes:

_ JdcosOy dmgrg- - |J| - (|A+ A7)

" Tz 6.23
d [dcosOy dmyix--|J|- (|AP? + |A]?) (6.23)

The sum of the fractions can differ from unity due to interference between the resonances.

The isobar amplitudes, phases, and fractions for each resonance are listed in Table 6.14.
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Figure 6.37: K™K~ K%(7"n~) mode: ,Plot’s of selection variables overlaid with PDF for
(a-b) signal, (c-d) continuum, and (e-f) combinatorial B background.
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Decay Amplitude c, Phase ¢, Fraction F,. (%)
»(1020)K° 0.0098 £0.0016 —0.114+0.31 129+ 1.3
fo(980)K° 0.528 + 0.063 —0.33 £0.26 22.3£8.9
Xo(1550)K° 0.130 £0.025 —0.54+0.24 41+18
NR (KTK™) 1 (fixed) 0 (fixed)
(KTK") 0.38 +0.11 2.01+0.28 91+ 19
(K~KY) 0.38£0.16 —1.19+0.37
Yeo K 0.0343 £ 0.0067 1.29 +£0.41 2.84+0.77
DTK~ 1.18 £ 0.24 - 3.18 £ 0.89
DFK- 0.85 £+ 0.20 - 1.72 4+ 0.65
Table 6.14: Isobar amplitudes, phases, and fractions from the fit to the B —

KK~ K%(7"7~) sample. Three rows for non-resonant contribution correspond to coeffi-
cients of exponential functions in Eq. (6.20), while the fraction is given for the combined
amplitude. Errors are statistical only.

In Fig. 6.38 we show the ¢Plot-weighted distributions of the Dalitz plot variables for
B - KTK-K%r*n™).

We compare our fractions with other Dalitz plot analyses using flavor symmetry [81].
We find consistent fractions for decays through the ¢(1020) resonances with the Bt —
KTKTK~ decay [75, 76]. The fraction of f(980)K° decays is consistent with the study
of Bt — KTKTK~ decays by BABAR Collaboration, and all Bt — K*txt7x~ Dalitz
plot analyses [75, 76, 82]. The fraction of non-resonant decays, which is predicted to
be half of the contribution in BT — KtK*K~ [81], is harder to compare since existing
measurements in the charged mode are inconsistent. Our result agrees well with BABAR'’s
result [76], and is within two standard deviations of Belle’s result [75]. Determination
of the wide scalar resonance at 1.5 GeV/c?, labeled as X(1550), is even more uncertain.
Using the same resonant parameters as in the analysis of the charged mode, we find a

much smaller fraction than in BABAR’s analysis [76], but our solution is more consistent

with Belle’s Bt — KTKTK~ analysis [75].

6.7.3 Fit to the CP Asymmetry in B® - KTK-K?°

While the other two sub-modes have not sufficient purity to extract the isobar parameters
from data, they can be added in the fit for the time-dependent CP asymmetry. In-fact,
above all B® — KK~ K? provide a significant contribution in terms of signal statistics,
even if with low purity.

We then fix the isobar amplitudes and phases to the ones fitted in the K™K~ K?
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sample and reported in Table 6.14 and fit the asymmetries in amplitude (b in the polar
coordinates) and in the phase (¢ in the polar coordinates) simultaneously on the combined
K*K~K° data sample. In order to take into account the opposite CP eigenvalue of
KTK~K? decay with respect to KTK~K?, we have to produce a sign flip in the “sine

term” of Eqn. 3.1:
+q2Im (AA*@’QW) .
This is achieved in the fit with the substitution 3 — 8 + 7/2 in the K™K~ K? time-
dependent Dalitz PDF.
The isobar parameters b and 0 can be translated in terms of direct CP asymmetry

and mixing-induced CP asymmetry, respectively:

e — |ef? 2b
o ]2 + || 1+ 0 (6.24)
Bef = Bsm + 6 (6.25)

where Bgyr = 0.379 is a constant offset set to the Standard Model value of the CKM angle
G.

Validation of the CP Fit

We validate the combined fit with a set of toy Monte Carlo experiments. We fit simul-
taneously the signal and background yields for the three sub-modes, together with the
CP asymmetry parameters. In the same time, most of background parameters are left
varying in the fit.

In Fig. 6.39 we show the pulls for the signal and background yields for all the modes,
while in Fig. 6.40 are the fitted values. In Fig. 6.41 we show the pulls for the background
tagging fractions, which are kept varying in the fit.

In Fig. 6.42 we show the pulls, the fitted central values and the distribution of errors
on the CP parameters b and 9.

From these toy experiments it is evident that the likelihood is able to fit all the signal
yields, together with the C'P asymmetry parameters, without significant bias. Then we

perform this fit on the combined B® — K+K~K° dataset.

Results on the CP Asymmetry for the Full B — KT K~ KP° Dalitz Plot

The results on the K+ K~ KY(7"7~) yields are consistent with the ones obtained with the
single mode fit and reported in Table 6.13.
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Figure 6.39: Toy results for the combined fit to the whole Dalitz plot for all three sub-
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Name Fitted Value
nSigTot 138.3 £16.9
nBkgTot 1415.1 £ 40.6
nBBkgTot_np 45.6 £16.6
fBkg00_KaonI 0.058 = 0.006

fBkg00_KaonII 0.107 £ 0.009
fBkg00_KaonPion 0.105 % 0.008
fBkg00_Lepton 0.0036 == 0.0019
fBkg00_Other 0.137 £ 0.009
fBkg00_Pion 0.160 £ 0.010

Table 6.15: KT K~ K2%(7°7%) mode: Results for the signal and background yields. nBkg
stands for number of continuum background events, while nBBkgTot stands for the
number of combinatorial (non-peaking) BB background events.

Name Fitted Value
nSigTot 583.1 £ 59.7
nBkgTot 20578 £ 172
nBBkgTot_np 422.2 £ 98.3
fBkgKL_KaonlI 0.059 = 0.001

fBkgKL_KaonII 0.140 £ 0.003
fBkgKL_KaonPion 0.140 £ 0.003
fBkgKL_Lepton 0.0011 £ 0.0009
fBkgKL_Other 0.123 +0.002
fBkgKL_Pion 0.167 £ 0.003

Table 6.16: KK~ K2(m°7%) mode: Results for the signal and background yields. nBkg
stands for number of continuum background events, while nBBkgTot stands for the
number of combinatorial (non-peaking) BB background events.

The signal and background yields for the KK~ K?(7%7%) sub-mode are consistent
with what expected (see Table 6.15). We show the signal and background ;Plot-weighted
distributions for the selection variables mgs and AFE in Fig. 6.43, while we show in Fig. 6.44
the signal ;Plot distributions for the Dalitz variables.

The results for the yields of B — KtK~K? are reported in Table 6.16.

We show the AFE distribution in Fig. 6.45, where we apply harder cuts on event shape
variables (with 30% efficiency on signal) to enhance the signal in the plot. We show in
Fig. 6.46 the signal ,Plot distributions for the Dalitz variables for KK~ K? sub-mode.

Note that for all the three sub-modes we use the same Dalitz plot model (which is

the one fitted in KK~ K? by alone), but the model in the projection plots of Figs. 6.38,
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6.44, 6.46 can be different because the efficiency across the Dalitz plot is different.

In Table 6.17 we report the results on the CP asymmetry parameters, expressed in
terms of direct CP asymmetry Acp and weak phase Beg. The expected values in the
Standard Model are Acp =0 and Gy =0.379 [30].

Parameter KTK KY(rtr~) KTK K(r'7") KK K? Combined
Acp -0.10 = 0.09 -0.10 &£ 0.28 0.28 £ 0.20 -0.034 + 0.079 £ 0.025
Begr 0.37 £ 0.08 0.24 £ 0.22 0.29 £ 0.21 0.361 £ 0.079 £ 0.037

Table 6.17: Results for direct CP asymmetry Acp and mixing induced CP asymmetry
parameter (. in the three different sub-modes studied for the decay B® — K*K~ K.

The fitted value for 3.4 which has the minimum log(L) is consistent with one standard
deviation with the preferred solution by the Unitarity Triangle fit.

We show in Fig. 6.47 the ;Plot-weighted time difference distribution At for B® and
BY tags for B - K*K~-K? and B® — KTK~K?, showing a large CP asymmetry effect
with opposite eigenvalue between K2 and K.

We also remove an ambiguity in the solution for the mixing angle B.p — 7/2 —
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Figure 6.48: Change in the Alog(L) value as a function of f.;. SM expectation value is
Be =0.379.

Be (present in previous measurements of sin(20.4) in penguin decays). We estimate
the significance of the nominal result for B, compared to the trigonometric reflection
where By — m/2 — Bey. In a collection of fits with both isobar coefficients and CP-
asymmetry parameters allowed to vary, we randomize the initial parameter values and
evaluate the likelihood separation between these two solutions. We find Alog(L) = 10.4,
which excludes the reflection at a significance of 4.6 standard deviations. Note that the
ambiguity B.p — Beg +7 still remains since we measure the total phase difference between
B and B decays (28.5). A scan of the change in likelihood as a function of 3,5 is shown
in Figure 6.48.

Fig. 6.49 shows the allowed 4-fold ambiguity on 3 by the sin 23 measurement in B® —
[cc] K° decays. Our measurement rejects the band at higher 3 at 4.6 os, which is already

disfavoured by other measurements of the Unitarity Triangle [30].
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6.8 CP Asymmetry in the Low KTK~ Mass Region

The region of low K+ K~ invariant mass is the one where the interference between CP-even
and CP-odd decays is the largest, due to the presence of the strong P-wave contribution
of the ¢(1020). The B® — ¢K?" is also the one with the lowest theoretical uncertainties
on Beg.

We select events in the low K™K~ mass region using a cut of mg+g- < 1.1 GeV/c2
After this selection, we retain 836 K™K~ K2(ntn~) candidates, 202 K+K~K%(n'7")
candidates, and 4923 K+*K~K? candidates. The most significant contribution in this
region comes from ¢(1020) K and f,(980) K decays, with a smaller contribution from a
low-K*t K~ tail of non-resonant decays. We vary the isobar parameters for the ¢(1020)
and fix all other components to the results of the full Dalitz plot fit. We also vary the CP
amplitude and phase asymmetries for the ¢(1020) and f,(980). The asymmetry for the
other components is fixed to the SM expectation. This is one of the main difference with
respect to the full Dalitz plot fit, i.e. allowing for different resonances to have different
CP asymmetries, which in practice means allowing B® — ¢K° to receive different New

Physics contributions with respect to B — fyKY decays.

6.8.1 Validation Studies

We validate also the fitting procedure for the low mass region because of the higher number
of floating parameters with respect to the full Dalitz plot fit (different CP asymmetry
for foK° and isobar amplitude ¢, and phase ¢, for ¢K°). We perform toy Monte Carlo
experiments using the Standard Model values as generation values for the CP asymmetries
for B — ¢K° and B° — fyK°. In Fig. 6.50 we show the pull distributions for the isobar
parameters and the CP asymmetries; in Fig. 6.51 and 6.52 the fitted central values and
errors on them, respectively.

These fitter test show that the likelihood is able to fit the isobar parameters and the

CP asymmetries in the low mass region separately for ¢(1020) and fy(980) resonances.

6.8.2 Fit Results

We perform a fit to all sub-modes, then perform an additional fit to the entire KK~ K?°
sample. We find signal yields of 252419, 35+9, and 195433 events for KT K~ K2 (7 t7™),
KTK-K%(n°7%), and KK~ K? respectively. Fig. 6.53 shows projections of the Dalitz
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Figure 6.50: Toy results for low-mass fit to all K™K~ K°

the isobar parameters and CP asymmetries.
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plot distributions of events in this region. The CP-asymmetry results are listed in Ta-
ble 6.18. The plots in Fig. 6.54 show distributions of At for B tagged and B’-tagged
events, and the asymmetry, obtained with the ,Plot event-weighting technique, for the
KTK-K%rtn~) and K™K~ K? sub-samples.

The decay B — ¢K°, with highly suppressed tree amplitudes, is, in terms of theoret-
ical uncertainty, the cleanest channel to interpret possible deviations of the CP-violation
parameters from the SM expectations (Acp =0 and By =0.379). Values of (.5 are
consistent with the value found in B® — [cc| K decays [37, 38|.

Parameter KTK-KYrTn~) KTK KXn7%) KTK K" Combined

Acp(dKP) -0.10 £ 0.23 -0.83 £ 0.43 0.56 = 0.26 -0.18 = 0.20 &= 0.10
Betf 0.02 £ 0.16 0.32 = 0.69 0.90 = 0.30 0.06 £ 0.16 &= 0.05
Acp(fo(980)K°)  0.36 = 0.33 0.37 £1.25 0.0 (fixed) 0.45 + 0.28 £ 0.10
Berr(fo(980)KY) 0.04 £ 0.18 0.50 £ 1.26 0.379 (fixed) 0.18 & 0.19 £ 0.04

Table 6.18: Results for direct CP asymmetry Acp and mixing induced CP asymmetry
parameter J.¢¢ in the three different sub-modes studied for the decay B® — K+ K~ K°.
The fits in the B — K™K~ K? sub-modes, differently from B® — KTK~K? allow the
two CP asymmetries for f,(980) to vary, together with the two isobar parameters for the
#(1020). In B® — K*K~KY only fit only the CP asymmetries, together with the yields
are fitted.

6.8.3 Fit Fractions in Low KTK~ Mass Region

From the low my+ - fit to the K™K~ K2(7*7~) mode only we also measure the isobar

amplitudes and phases. We report the results on Table 6.19. When isobar parameters are

Name Fitted Value
¢(1020) ¢,  0.009120 £ 0.000944
¢(1020) ¢, —0.0304 £ 0.252

Table 6.19: Fitted isobar amplitude (c,) and phase (¢,) of the ¢(1020) in the region
my+r- < 1.1 GeV/c?.

converted to fractions (Eq. 6.23) we get values listed in the second column of Table 6.20.
We convert resonant fractions into branching fractions for the KK~ K final state (full

Dalitz plot):
E : Nsig

B;
NBE oy

(6.26)
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and list them in the Table 6.20. We also list branching fractions measured in BT —
KtK*K~ decays [76]. Both charged and neutral channels have the same decay rates
within flavor-symmetry assumption [81]. Both our branching fractions are within one

sigma from previous measurements, although with large errors.
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Figure 6.52: Toy results for low-mass fit to all K™K~ K events: distributions of fit errors
for the isobar parameters and CP asymmetries

Name F,[% B(B"— K'K K% B(B* > K'K'K)x 2=
OK? 565146 3.3+ 0.3(stat) 38+04
foK° 234425 484 0.5(stat) 6.0+£2.7

(K*K-K%yp 107411 - -

Table 6.20: KTK~K%(nt7~) mode: Fit to low KTK~ mass data sample using time-
dependent Dalitz plot fit. All branching fractions are in units 107°.
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butions of the Dalitz plot vari-
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6.9 Systematic Uncertainties

We evaluate systematic uncertainties separately for the full Dalitz plot fit and the low
mass fit. In the following we describe the sources of systematic uncertainties, and in
Table 6.21 we show the summary of them for both the full Dalitz plot fit and the low

mass fit.

Event Selection

We assign systematic uncertainties on the CP asymmetries due to parameters which are
fixed in the fit. In a large set of toy samples, we perform two fits: first we make the
nominal fit, then we vary the parameters by one standard deviation assuming that they
follow a Gaussian distribution (“smearing procedure”) and we repeat the fit. We take the

average observed change from the nominal fit as the systematic error.

Fit Bias

We account for a potential fit bias using values observed in studies with toy MC events
and full MC sample generated with a Dalitz plot model. We take the largest values of

the bias observed in toy studies as the systematic error.

Vertexing Method and Tagging

We account for fixed At resolution parameters, B lifetime, and mixing in the same way
we evaluated the fixed parameters of the selection variables.

We also account for possible misalignment in the vertexing detector. We fit a Monte
Carlo sample with five possible misalignment scenarios. We then take the largest difference

with the nominal fit to the same Monte Carlo sample as the associated systematic.

Beam Spot Position and Calibration

To assign a systematic uncertainty on the beam spot position, we shift the beam spot
position in the simulation by £20um in the y direction. The sensitivity due to eventual
calibration problems or time-dependent effects is evaluated by smearing the beam spot
position by an additional £20um in the y direction.

The effect on the position and smearing of the beam spot At is very small. We take

the largest change in the CP asymmetry parameters from the two shifts and add this in
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quadrature with the effect of smearing to obtain the total systematic uncertainty.

Tag Side Interference From Doubly CKM Suppressed Decays

The tagging parameters used for asymmetries measurement come from the fit to the
fully reconstructed B decays sample, where the charge of decay products are used to
determine the flavour of the two B mesons. These decays are dominated by b — cud
transition. However, in a fraction of events, b — @cd amplitudes can contribute to the
final states used for tagging. The interference effects between CKM-favored and doubly-
CKM-suppressed decays (DCSD) are not absorbed into the mistag rates, and so a bias in
At distribution can be induced by neglecting them [83].

The uncertainty on the CP parameters due to this effect is evaluated with the proce-

dure described in [83], with the most recent values of CKM parameters.

CP Content of the BB Background

The K+ K~ K? sub-modes have not charmless BB background, but only combinatorial BB
background. For this background, is reasonable to assume no CP asymmetry as for the
continuum. The K™K~ K? has a remaining contribution from the charmless (“peaking”)
BB background, which is a mixture of channels whose CP content is unknown. In the
nominal fit we assumed no CP asymmetry. We account for this uncertainty varying the
direct and mixing-induced CP asymmetry in the whole allowed region, repeating the fit,

and taking the largest difference with the nominal fit as the systematic uncertainty.

Dalitz Plot Resolution

The nominal Dalitz model assumes perfect mass resolution since it is small compared to
the resonant width for all Dalitz plot components. The mass resolution function of signal
events in the Dalitz plot is studied by comparing true and reconstructed values of Dalitz
plot observables in a sample of Monte Carlo events.

We study only the resolution effects in mg+ -, since the main resonances decay into
K*TK~. The mass resolution and bias in mg+ - for mass constrained B candidates is
shown in Fig. 6.55, which show how it is negligible with respect to the resonances width.

We convolve the Dalitz plot PDF with the resolution function shown in Fig. 6.55 and
repeating the nominal fit. The difference in CP asymmetry parameters between this fit

and the nominal one is taken as the systematic error.
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Figure 6.55: Mass resolution for K™K~ pairs in the K™K~ K2 (7 *7~) sub-mode.

Dalitz Plot Model

The systematic uncertainty related to the phenomenological parameterization of the B°
decay amplitude represents the main systematic error of the analysis. We use a set of toy
Monte Carlo experiments to estimate it: we generate toy samples using central values for
the Dalitz parameters smeared by their error, and fit with the nominal ones. Then we
take the difference as systematic error.

For the low mass fit, where isobar coefficients are fixed for all components except for
the ¢(1020), we use errors from full Dalitz plot fit to estimate impact on CP parameters
for ¢(1020) and fo(980).

We also assign an error due to uncertainty in the resonant and non-resonant line-shape
parameters. For resonant components this includes uncertainty in the mass and width of
Xo(1550). To evaluate the effect on the nominal fit we replace the nominal parameters
with those found in BY — KTK~ K" measurement [75]: m = 1.491 GeV/c?, T' = 0.145.
We also test a hypothesis that Xy is the f5(1500) (i.e. we use m = 1.507 GeV/c?,
['=0.109 GeV [21]). We take the largest observed difference from the nominal fit as the
systematic error.

Non-resonant distributions are not motivated by theory so we try three alternative non-
resonant models that depend on KTK? and K~ K9 masses: €212 ¢®12512 | ¢yz0i023 023523
and e12%12 4 ¢;3e13 13513 The dominant error comes from non resonant events when
KTK? and K~ K? dependence is switched off since they account for P-wave contribution.
We find a negligible change in b, and a large change in ¢§ (0.11). However, inclusion
of these non resonant components (which assuming SU(2) symmetry are symmetric in

momentum to KK~ component) was suggested by theorists [81] so we believe it would
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be over-conservative to include this change as a model error. We determine effect of the
uncertainty of the shape parameter o to CP parameters and include it into error.

For the low-mass fit we evaluate the systematic uncertainties using the same strategy.
The gain in this fit is a highly reduced contribution from the Dalitz plot model because
the mass region my+x- < 1.1 GeV/c? receives negligible contributions by the X(1500)
and the non-resonant. The list of the systematic uncertainties on the CP parameters in

the full Dalitz plot fit and in the low-mass fit is reported in Table 6.21.

Parameter oK"Y foKY KtK-K°
Acp  Beg Acp Beg | Acp  Bey
Event selection 0.00 0.01 0.00 0.00] 0.003 0.002
Fit Bias 0.04 0.01 0.04 0.02]0.004 0.010
At, vertexing, DCSD | 0.02 0.03 0.01 0.01|0.010 0.010
Tagging 0.01 0.00 0.01 0.00|0.021 0.002
BB CP 0.01 0.01 0.01 0.02]0.006 0.007
Dalitz model 0.09 0.03 0.09 0.03]0.011 0.035
Total 0.10 0.05 0.10 0.04]0.025 0.037

Table 6.21: Summary of systematic errors on CP-asymmetry parameters. FErrors for
¢K° and fyK° CP-parameters are based on the low-K ™K ~-mass sample. The K+ K~ K°
column refers to errors on average CP parameters across the Dalitz plot.

6.10 Summary of Results

In the fit to B — KT K~ KY(n*7~) decays, we have analyzed the Dalitz plot distribution
and measured the fractions of the intermediate states. They are given in Table 6.14.
Subsequently, we have extracted the CP asymmetry parameters from simultaneous fits
to a combined sample of B — KTK~K° decays with three possible final states of the
neutral kaon: K — 77—, K2 — 77" and K?. The average CP asymmetry in the Dalitz
plot is reported in Table 6.17, and it is found to be .4 = 0.361 £0.079 £0.037, where the
first error is statistic and the second is systematic. This result is fully compatible with the
Standard Model expectation (5 = 0.379). We also measured the direct CP asymmetry to
be consistent with zero.

From a fit to events at low KK~ invariant masses, we measured the CP asymmetry of
the decay BY — ¢K° which is, in the number of the decays mediated by b — s transitions,
the one with the smallest theoretically uncertainties. For this decay we measured SB.g =

0.06£0.16£0.05, which is not significantly different from the Standard Model expectation.
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From this fit we measured also the CP asymmetry of the decay B° — f,K°, and found
Beg = 0.18 £0.19 £ 0.04. These results are reported in Table 6.18. We also measured the
direct CP asymmetry for B — ¢K° and B° — f,K°, and found them consistent with

zero, which is the Standard Model expectation.



Chapter 7

Measurement of CP Asymmetry in
BY — KgKgKg Decays

As discussed in Sec. 1.5, the B® — KYK?K? decay, although it is a three-body decay,
has a well defined CP eigenvalue (CP-even). For this reason a Dalitz plot analysis as
in B — KTK~K° is not necessary for a time-dependent measurement of S and C
parameters [84]. For this reason a standard time-dependent measurement of the CP
asymmetry, like in B® — [c] K© decays, is feasible.

In order to maximize the statistical significance of the measured CP asymmetry, we
reconstruct two sub-modes: one with candidates formed by three K0 — 77~, the other
with candidates formed by two K? — a7~ and a third K? — #%°. In fact, since
B(KS — ntn™) ~ 2B(K? — 797%), we expect

3

K¢ 000) A QNW (B* = 3K ..-), (7.1)

sw0m0

Nipye = (BO - 2Kgﬂ-+ﬂ
where Ny... indicates the number of B mesons decaying in the specified manner, i.e.
without considering the efficiency reconstruction, which is lower for K0 — 7% with
respect K0 — whr~.

For this measurement we use 374 x 108 BB pairs recorded at the 7(4S5) resonance by

the BABAR detector.

7.1 The Event Selection

In this section we describe the selection of events for B — KYK?K? decays. Because of

the different purities of the two sub-modes, we apply different selection criteria on them.
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7.1.1 Selection of B® — K?K?K?(ntn™)

For this sub-sample we reconstruct K0 — 77~ candidates from pairs of oppositely
charged tracks originating from a common vertex, with the procedure described in Sec. 5.2.1.
We then combine the three selected K7 in the event to form the BY candidate. We use the
kinematic variables described in Sec. 6.3.2 to define the B meson candidate: mgs and AFE.
Since in this decay there are only charged tracks in the final state (six charged pions),
the resolutions for these two variables are similar to ones reported in Sec. 6.3.2 for the
K*K~K? final state: 2.5 MeV/c? and 14 MeV/c?, respectively. We select BY candidates

satisfying the following requirements:
e 5.22 < mgg < 5.30 GeV/c?
e —120 < AE <120 MeV

These requirements are quite loose in order to keep enough sideband events to characterize
backgrounds.

The main background comes from the ee~ — ¢g fragmentation. We apply a re-
quirement on |cosfr| < 0.9 and the shape of a Fisher discriminant F, calculated from
the order zero and order two Legendre monomials Ly and L,. Contrary to the case of
B — K+*K~KY analysis, the Fisher discriminant is uncorrelated from the other vari-
ables, so that we can use all the discriminating power including it in the likelihood. This
allows to gain in efficiency on signal and in separation power with respect continuum
background. We define the wide Fisher allowed region in —3 < F < 4.

We also apply requirements on the KOK? invariant mass in order to veto decays
through intermediate charm resonances y. and Yx., which we will discuss in Sec. 7.2.
The event selection efficiency is about 6%, and the details on the efficiency of the single

requirement are reported in Table 7.1.

7.1.2 Selection of B? — K?K?K?(n=")

In order to reconstruct the sub-mode B® — KYKYK2(m°7Y), we select two K — w7~
with the same procedure described for the KOK?K? (w7~ ) sub-mode. Then we form a
K? — 797° using the criteria described in Sec. 5.2.2. We combine the two KJ — 77~
and the K2 — 770 candidates to form a B meson.

We also impose these very loose requirements:
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Cut Signal MC
Total Events Before cuts 48956
5.22 <mES < 5.3GeV 84.6 84.6
|AE] < 120 MeV 90.6  76.7
K? flight length 0.2 < rppc < 40 cm | 86.5 66.3
K? mass 12 Mev 86.6  57.4
K? angle cut a < 200 mrad 94.6 54.3

| cos O] < 0.9 88.3  47.9
K? vertex prob P(x?) > 1.2573 92.8 445
Vetoes on x.o and X 82.1 36.5
Luminosity /#Generated Signal MC 315 K

# of Events (¢) after cuts 21775 (6.91%)
# of Events () after vetoes 17876 (5.67%)

Table 7.1: Selection efficiencies for analysis cuts with B® — K2K?K? (77 ~) signal Monte
Carlo. We report in the first (second) column the relative (cumulative) efficiency.

1. the total energy of the event has to be less than 20 GeV;
2. at least one track has to be present in the rest of the event.

These requirements, within the presence of the three selected K7, are referred as “pre-
selection” in the following.

In order to define the B meson, we use a set of two kinematic variables. While for
the sub-mode K?K?K%(mT7~) the usual variables mpg and AFE are almost uncorrelated
(because the final state includes only charged tracks in the final state), this is no longer
true when one or more photons are present in the final state. In this case, because of leak-
age effects in the EMC, the reconstructed energy of the photons can be underestimated,
affecting both the reconstructed momentum and energy. This produces a non Gaussian
left tail in both mgs and AFE variables, which increases the correlation between the two
variables. A study has been done for the first time for decays B® — K%7° by the BABAR
Collaboration [31] introducing a set of two new kinematic variables, mp and m,;,;ss, which

have less correlation than mggs and AFE. They are defined as:

mp = |Q7‘ec|

Mppiss = ’q&‘e— - QTec(mB = 0)‘ (72)

where @e+.- is the four-momentum of the eTe™ system and g...(mp = 0) is the four-

momentum of the fully reconstructed B meson after a mass constraint is applied. There-
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fore, they represent the mass of the fully reconstructed B (mp), and the mass of the
tagging (“missing”) B meson with mass constraint on the other one.

To a good approximation, (mgs,AE) and (m,,;ss,mp) are related by

mges = (mmiss + ngG)/27
AE =~ mp— (Mpiss + mE29) /2 & mp — mEPC (7.3)

where mEPY is the nominal B mass [21]. Therefore, the shape of 17, is mps-like, while

mp is AFE-like.

By construction, the linear correlation coefficient between m,,;;s and mpg vanishes.
This is valid in the limit of perfect reconstruction, but a small correlation can still arise
due to energy loss in photon reconstruction, but it is significantly smaller than mgg and
AE. From a signal Monte Carlo sample, we estimate it to be about 3% for the former
pair with respect about 15% of the latter. We then decided to use this set of kinematic

variables. We apply the following requirements on these two variables:

o 5.11 < Myniss < 5.31 GeV/c?

o —150 < mp — mEPY < 150 MeV/c?

which keep a wide sideband region for background characterization.

It comes from their definition that the two Legendre monomials £y and Ly are corre-
lated to the missing energy in the event, as shown in Fig. 7.1. This correlation is reduced
in the Fisher discriminant, which linearly combines the two Legendre monomials, but it
is almost canceled in the ratio Iy = Ly/Lg. Since the discrimination power of Iy is sim-
ilar to the one of the Fisher discriminant, we choose to use this simple variable for the
sub-mode KYK2K?(m%7%). A preliminary selection on | cosfr| < 0.95 is applied for com-
putational issues (it is included in “pre-selection”) then we use the whole Iy distribution
in the likelihood, without making a selection on it.

In the case of one or more badly reconstructed KY — 77~ in the B® — K2K?K?
decay, the x? of the B vertex fit presents a tail corresponding to non converged fits, as
shown in Fig. 7.2. Since the number of wrongly reconstructed K? is lower in signal decays
than in background, the vertexing x? has background rejection power. In particular, a
requirement x* < 20, equivalent to P(x?) > 1.25- 1073, we are able to reject (33.6 =+
0.6)% of ¢q events and (48.9 & 1.9)% of BB background events, whose composition is
described in 7.2. This requirement has a signal efficiency of (92.0 £+ 0.2)%.
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We also apply the veto on charm intermediate resonances Y.y and Y.o, which will be
described in Sec. 7.2.

The summary of the selection efficiencies is reported in Table 7.2. The total re-
construction efficiency of this sub-mode is about 3% (This includes the B of the decay

K% — Kg — 71'071'0).

Selection e (%)
pre-selection 9.3+ 0.2
Imp — mEPY] < 150 MeV/c? 86.3 + 0.2
(5.11 < marss < 5.31) GeV/c? 99.7 £ 0.2
LAT < 0.55 92.0 £ 0.2
(480 < myo, < 520) MeV/c? 83.7 + 0.2
mass,, < 141 MeV/c? 91.1 £ 0.2
E, > 50 MeV 87.2 + 0.2
‘ngJﬁ - ngPDG| < 11 MeV/c? 88.6 + 0.2
K72 life time significance > 5 90.7 £ 0.2
(0.15< K9 transverse decay length < 60) cm  99.2 + 0.2
X2(BY) < 20 92.0 £ 0.2
veto on Y and e 83.3 £ 0.2
Total efficiency 3.0£0.2

Table 7.2: B® — K2K?K%(7%7%) mode: reconstruction efficiency, as estimated from signal
Monte Carlo events. The efficiency of the single cut is evaluated with respect the previous
one.

7.1.3 Best Candidate Selection

The largest part of the selected B® — KYKYK?(r"n~) events has only one reconstructed
candidate. For the 1.4% of the events having more than one BY candidate, we evaluate a

x* based on the three K2 invariant masses:

PDG\ 2
mKO’i — mKo
X2 = Z ( So-m 3 ) 5 (74)

; 0
1 Kg

where m K9 18 the mass of the reconstructed meson, Ty is the measured error, and migc
is the nominal K mass [21]. The candidate with the smallest value of x? is chosen.

The KYKYK2(7%7°) sub-mode has a higher B® multiplicity: about 1.7 candidates per
events are reconstructed, because of multiple K? — 77" combinations. We use the same

variable of Eq. 7.4 to choose the best BY candidate. Based on a study on Monte Carlo,
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we estimate that this criterion matches the right candidate the 81.5% of the times. This
value has been evaluated normalizing the number of correctly chosen best candidates to

the number of events for which one of the candidates is fully matched by the Monte Carlo

truth (i.e. the generated particles). !

'When no reconstructed candidates matches the true decay, the best candidate selection algorithm
necessarily fails. Because of that, we ignore these events in order to evaluate the performance of the

chosen criteria.
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7.2 BB Background

We study the contribution to the background due to other B decays using a high statistics
Monte Carlo sample of generic B decays. For this analysis we use 559 M B°B° decays
and 530 M BT B~ decays, which are approximately equivalent to two times the actual
BABAR data sample. In this section we describe the contributions to both the sub-modes.

The most relevant background is made by decays which proceed through intermediate
charm resonances, which then decay into KYK?. This constitute in principle a signal
component, because they produce the same final state of the signal decays. They have
to be vetoed because they proceed through a b — ccs transition having a pure Standard
Model value for the time-dependent CP asymmetry (S ~ sin 23), then they would dilute
the sensibility to New Physics effects in signal b — s events.

Decays of the charmonium resonances x. — KJKJ and 7. — KJK{ are forbidden
by angular momentum conservation. In fact, the two pseudoscalar K have even angular
momentum (because of Bose-Einstein statistics), and so they cannot be produced by a
vector resonance, like the x.;. Since the K? K pairs are in S-wave, parity conservation
in decays mediated by strong interactions forbids them to come from an 7., which is a
scalar with P = —1. Decays of Jjip — KUK? or ¢(2S) — K2K? are strongly suppressed
by the twist leading accuracy (which is an exact cancellation in the limit m;, — oo, where
my is the mass of the b quark [85]). Then, the only remaining allowed decays through
charm resonances are x.0 — K2K? and y. — KYK?. To avoid the contamination from
these decays, we apply vetoes on the K2 K2 invariant mass.

We tune the mass veto on a Monte Carlo sample of exclusive B — x. K2 decays,
with y. — K2K?. Since resolution in energy and momentum is worse for the KO —
7070, the resulting mass resolution for KO(7 ™7~ ) K2 (n*7™) is different than the one for
Krta ) K2(7°7%) (Fig. 7.3), and we apply different selections to them. We estimate
the mass resolutions using a Gaussian fit.

For B — KYK?KY(r"n~) sub-mode we apply three standard deviations vetoes to

both x.o and xeo:
1. MK KD ¢ (3.3715, 3.4708) GeV/c?, and MK O ¢ (3.5224,3.6016) GeV/c?.

For B® — KYKYK%(m°7%) sub-mode, the contribution from Y. resonance is negligible

also without applying any veto. We estimate it to be less than 1% of the signal. We then
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Decay mode # Events B Exclusive MC Eff. N expected
BY — KOKOKD 5 (24£26) x 1070 143K 0.1% 0.4
B* — K*KOK? 7 (11.5+ 1.3) x 10 5756K 0.1% 1.9

Table 7.3: Number of background events passing the selection in generic B Monte Carlo
samples (559M B°BY 530M B*B~). The assumed branching fraction, the number of
generated events of exclusive Monte Carlo, the reconstruction efficiency and the expected
number of events in the on-resonance dataset are given.

apply a veto only to y.o resonance. We define this selection to reject y.o at two standard

deviations:
1. m(K2(rrn ) K2(77%)) ¢ (3.300,3.496) GeV/c?
2. m(KY(rtn )K3(ntm™)) ¢ (3.385,3.457) GeV/c2.

This reduces this background to a negligible level.

After vetoing the charm resonances, the contribution to background due to other
B decays is found to be negligible for the K?K°K%(nT7~) sub-mode. We show the
distributions of mgg and AF for events passing the selection in the Monte Carlo of
generic B decays in Fig. 7.4. We studied the two principal sources of B background for
this mode, B — KYKJ2K? and BT — KTKYK?, using exclusive Monte Carlo samples
for these decays. In Table 7.3 we show the reconstruction efficiency and the number of
expected events in the final dataset for these decays. In Fig. 7.5 we show the mgs, AE
and F distributions for them. In the case of B — KYKYK? the missing K has to
be taken from the rest of event, and the uncorrelation of its momentum with the other
two (coming from the reconstructed B candidates) produces a phase-space distribution in
mgg similar to continuum one. In the case of B — K1TK2K? only charged track has to
be taken from the other B, together with a mis-identification of the K. This brings to a
partially peaking shape in mgg (due to the mass constraint used in the variable definition),
while the AFE variable is completely phase-space like. We tested with a sample of toy
Monte Carlo experiments that the effect due to this background on signal yield and CP
asymmetry parameters is negligible. The toy Monte Carlo are performed adding such a
component in generation and fitting without it, and verifying the absence of any bias in
the signal parameters. Hence, this component is not included in the maximum likelihood
fit.

For the B — KJYK?K?(7%7%) sub-mode the background from generic B decays is
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Decay mode BF Events in fit region Events in signal region
KYKOK? (6.9709 4+ 0.6) x 107° 166.7 +/- 21.7 159.8 +/- 1.1
Xe2 K2 unknown 0+1 0x1

X0 K9 <25x 1074 241 0+1
ao(1450) K9 unknown 1+1 1+1
Dtp~ (7.74+1.3) x 1073 24 £4.7 1+1
DT K*~ (3.84+1.5) x 107° 7T+14 0+£1
DOK*0 <18x107° 1+3 0+14
D*p (6.84+0.9) x 107° T+ 4.7 2+14
fo(980) KK Y unknown 1+1 0+1
K*"K{K?, unknown 1+14 1+1
KYK)KY, unknown 17 £ 3.7 4+1
Dt (1.34 £0.18)% 17+ 4.2 1+1.7
JJWK* (1.31 £0.07) x 107 0+14 0+1
Other 127 £ 11 17 £ 3.1

Table 7.4: B® — KYK9K%(7°7%) sub-mode: events selected in the whole B°B® and B+ B~
Monte Carlo samples, for an equivalent luminosity of ~ 906 fb~!. Charm veto on Y. is
applied. For the modes with unknown branching fraction it has been assumed B = 107°.

The number of expected signal events are evaluated using the most recent measurement
of B — KYK?KY branching fraction.

larger, even if it is still by far negligible with respect to the ¢g one. From the study
of the same Monte Carlo samples used for the KOK2K2(7Tn~) sub-mode, we identify
the main sources of BB background. The most dangerous background events are those
which accumulate in the signal box, i.e. the region in the 2D kinematic plane where the
signal events peak. We define this smaller signal box as 5.26 < M < 5.30 GeV/c? and
5.20 < Myee < 5.35 GeV/c?.

The results are reported in Table 7.4. From this study on generic Monte Carlo we find
in summary that 205 events pass the final selection on the sample of neutral and charged
B decays of about three times the luminosity of the final dataset. Of these events, only
27 events lie in the signal box, as defined before. Assuming an integrated luminosity of
350 fb™!, this corresponds to 79 events in the whole fit region and about 10 events in the
signal box. This number is in agreement with the fraction of combinatorial background,
under the peak of the signal distribution (i.e. no peaking structures are observed). For
comparison, we expect ~ 60 signal events, almost entirely included in the signal box. In
Fig. 7.6 and 7.7 we show the distribution of m,,;ss and mp for the selected events in

B°B® and B* B~ generic Monte Carlo sample, respectively.
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Even if there is not a significant peaking component in the kinematic variables m,,;ss
and mp for these events, they cannot be included in the continuum component because
the event shape variable I, has a signal like distribution (since these are B decays and the
Legendre monomials are sensible to the rest of the event). In part, the same happens to
the time evolution, since the fraction of these events which are well reconstructed B has
non-zero lifetime, while the rest are prompt (like ¢qg events). For these reasons we will

include a BB component in the fit for KKK (7%7°) sub-mode.
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7.3 Fit to CP Asymmetry

As we have described in Sec. 2.3, even if the vertex of the B° for these decays is recon-
structed using the K? — 777~ decay vertex, the unusual At resolution function can be
used, but only if at least one of the K2 — 777~ decays within the innermost layers of
the vertex tracker.

The classification of the goodness of the B vertexing for the CP fit has been done
in terms of the SVT classes described in Sec. 2.3.1. Since one K2 — 77~ is sufficient
to reconstruct the B vertex, we assign the B to the class of the best K?. Clearly, the
probability to have a B with all the K unusable for the CP fit is very small (it is about
3.5% for KYKYK2(77?), and negligible for KYKOK2(wTn~)). This leads to a better
signal yield. In Table 7.5 we report the fraction of events for the two KYKYK? sub-modes

belonging to the different SVT classes. Then we consider as good candidates for the

K? Class KYKOKX(r 7)) (%) KUKYKY(w'wY) (%)

Class 1 89.5 79.0
Class 11 9.1 14.5
Class II1 1.0 3.0
Class IV 0.4 3.5

Table 7.5: Fractions of events which belong to the different SVT classes for signal Monte
Carlo events of B® — KYKYK?.

measurement of S those B® which:
1. satisfy |At| < 20 ps
2. satisfy o(At) < 2.5 ps
3. belong to Class I or Class II.

The rest of the sample, called bad, is used for the determination of the signal yield and
the direct CP parameter C'. This can be measured from tagging when no At information
is available by determining the flavour of the By,y. In this case the measured asymmetry
is

Apeas = C/(1+22) (7.5)
where the dilution factor 1/(1 + z2), with 24 = Ampo/T'go = 0.776 & 0.08 [21], is due to
the effect of B%-B° mixing.
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Despite the different vertexing technique, the same resolution function of BReco decays
can be used, as displayed in Fig. 7.8. This figure shows the good agreement between At
distribution for signal Monte Carlo events and the PDF obtained on BReco data.
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Figure 7.8: Distribution of (a) o0(At) and (b) At for good candidates in signal Monte Carlo
events, with BReco PDF superimposed (top: linear scale, bottom: log,, scale).

7.3.1 Likelihood Structure

The signal and background yields, together with the C'P parameters, are extracted using

an unbinned extended maximum likelihood fit, as for the analysis of B — K+K~K°.
The likelihood function for B® — KYKYK? is a bit complicated by the split in good

and bad events for the measurement of S and C'. We checked that the correlation between

the variables is small (Sec. 7.6), so that the likelihood of the KOK?K?(n+7~) sub-mode
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Variable Myues Mp At O AL ly MK 7070
Miiiss 1 —0.03 —-0.0056 —-0.02 —0.03 0.01
Mpg 1 —0.02 0.01 0.004 0.06
At 1 —0.03 —0.004 —0.001
OA 1 —0.03 0.0004
Iy 1 0.002
MK 37070 1

Table 7.6: KOKOK2(n%7%) mode: linear correlation for the likelihood variables entering
the likelihood function, evaluated in signal Monte Carlo events. The correlations for the

background events are smaller.

can be written as a product of independent PDF’s as follows:

e~ (Ns+Np+Npp)/N

L =
Ny/(Ns+ Np + Ngg)!
Ngood
Z {Nng)odefi
1€good
NBng;odecBi
Nppfhoel?
Npad
S S
Z {Ng(l - fgood)eci
i€bad
NB(l - ng;od)ecBi
Npp(1— f25)el?

(7.6)

Ps(mps,) Ps(AE;)Ps(F;) Ps(At;, T|oae,) +

Pg(mpgs,:)Ps(AE;)Pg(F;) Pg(At;, T)oa,)
Ppp(mps;)Pp(AL;) Ppp(Fi) Pep(Ati, Tloay,) } +

Ps(mps,;)Ps(AE;) Ps(F;)Ps(T) +

Pg(mps,;)Ps(AE;)Pg(F;)Pg(T) +
Ppp(mps:)Ppp(AE;) Ppp(Fi) Ppp(T)}

where Ng, Np and Npp are the signal, continuum and BB background yields, fsooq is the

fraction of good events, €., is the tagging efficiency in the category ¢; and T is the flavour

tag. The same function is used for the K?K?K?(7%7°) mode, substituting mgs — mpiss,

AFE — mpg and F — [5.

We parameterize the signal and background PDF’s with unbinned maximum likelihood

fits to signal Monte Carlo samples and to data sidebands. As usual, the parameters of

the PDF’s for the continuum background are extracted simultaneously to the signal event

yields and CP parameters, since our selection retains sufficient sidebands to allow their

determination.
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B° — K)K?K?(w*x~) Parameterization

We model AF distributions of signal events with a double Gaussian shape. For continuum
background we use the on-resonance data selected in the low mgg sideband (mgs < 5.27
GeV/c?) and we parameterize the slope using a second degree polynomial.

We fit the mgg distributions of signal events using double Gaussian functions. For
continuum background we use the on-resonance data in AE sidebands (JAE| > 40 MeV)
to obtain the parameters of an ARGUS function, defined by Eq. 5.11.

We use signal Monte Carlo and sideband of on-resonance data (mgs < 5.27 GeV/c?)
events to determine the shapes of F for signal and continuum background, respectively.
For signal, we fit with an asymmetric Gaussian plus a Gaussian, and a double Gaussian
for continuum background.

We show the distributions for the event selection variables, together with their PDF’s,
in Fig. 7.9.

We have discussed on At parameterization for signal events, while for continuum
background we use an effective parameterization which follows the same functional form
of the one used for B® — KT K~ K° decays, and described in Sec. 6.5.2.

In the final fit, we float as many background parameters as we can so that uncertainties
in the values of these parameters contribute to the statistical error on .S and C and these
parameters can be determined by taking advantage of the larger statistics in the full
on-resonance sample.

Since the statistics and purity of the B — KYKYK?(r"n~) sample are very good, we
want to float some of the core parameters of signal component so that the uncertainties of
signal PDF parameterization can be transferred into yield uncertainties. From toy Monte
Carlo studies we find we can leave varying the mean and sigma of the core Gaussian of AF
and mgg for signal without introducing any bias in the fit and with a negligible increase

of the statistical error on the CP asymmetry parameters.

B° — K)K?K?(7°n®) Parameterization

We use a Cruijff function (see Eq. 6.15) to parameterize mp and m,,;ss, and the sum of two
Gaussians for [o. From a comparison of the distributions of likelihood variables for different
tagging categories, we observe a non-negligible effect on the shape variable I, (above all,

the lepton category with respect the other ones), while mg and m,,;ss shape does not



246 Measurement of CP Asymmetry in B® — KYKYK? Decays
< 3500 X2Indf=2572 T < " [xZTndf=0.976T 7
8 F fo= 0.8430+0.0086 1 g 40 p,=-0pi29+ 057
t . = 0.00697+ 0.00016GeV = p.=-1p12+87 3
o — —] o
g 3000F : =-0.00306+0.0013GeV oS 3B . ;
3 25000 0. = 001532+ 0.00018BeV & 45 T E
g E o, = 0.0504+0.0016 G§v £ E
g E - g E
O 5000k- ] ] 25 =

- 3 20
1500 3
c ] 15
1000 3
- ] 10
500 E 5
P nf AN N . o1 . I . 1 . 1 . 1
01 -0.05 0 0.05 0.1 01 -0.05 0 0.05 0.1
A E (GeV) AE (GeV)
; 4500 :—XZ'/ PP T T T T T — ; 30— T T — T T z Trar=o0k79 ™
3 Fe 3 N £=-2318+6.7 ]
o Ff.= 0.9764+0.0018 o C ]
g 4000 F, = 5.279440 + 0.000021 GeV/ g asf I
S ss00fH, = 5:2628+0.0049 GeV S F 3
P F 6. = 0.002515 + 0.000017 GeV 3 20b =
€ 3000F °_ g . ]
g F'o, = 0.0287+ 0.0046 GeV 5 1 ] ]
w = w b
5 Al ;
E 1 1 I ]
2000 .
1500F 10~ -
1000F- C ]
E SE .
500 n
Bosee lo:0:0:5:90:0:0:0 e N - r . . oy
9% 504 5.26 5.28 8§22 5.24 5.26 5.28
mES (GeV) mEs (GeV)
".\T 2200:— T T T T T T T le/ nd|‘:0(908' _: E IXZ/ndf:O_éOG ]
S 2000F fo= 00708100065 3 g fo= 0.87£0.18 .
~ C n_ =-0. + 0. 4 < _ -
" E E 3 = 0293+0074
£ 1800F u=-0015£011 4 S He ]
g E E = p_ = 0.83+053 ]
& 1600F- 0.4509 + 0.0081 > T ]
E 0.631+0.011 7 £ 6, = 0583 0.054 ]
1400F 1.36+0.12 E 2 6, = 084:019 ]
1200 = :
1000F- E 3
800F 3 .
600 3 ~
400 - ]
200 1 v A4 ]
E | m - .
Olose b 4

Fisher

Figure 7.9: AFE (top), mgs (middle) and F (bottom) PDF’s for B — KKK (ntr™).

Plots on the left are from signal Monte Carlo events. Those on the right are from on-
resonance sidebands for continuum background. The F background plot is drawn on a
narrower range to remove zero content bins so that x?/ndf is more realistic, but the fit is
done on the full range with unbinned maximum likelihood fit. Dashed lines represent the

single components when the PDF used is composite.



7.3 Fit to CP Asymmetry 247

look correlated to the output of the tagging algorithm (see Fig. 7.10). Because of this, we
decided to use the same mpg and m,,;ss parameterizations for different tagging categories,

while we split the parameters of I, PDF. We parametrize the continuum background on
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Figure 7.10: B® — K2K?K?(n%7%) sub-mode: distribution of (a) mgp, (b) mypuiss, and (c)
[y for different tagging categories, from a sample of signal Monte Carlo events.

qq Monte Carlo sample. The fitted parameters are not used in the final fit (since all the
parameters except the ARGUS end-point are floated in the nominal fit), but are used in
toy Monte Carlo studies and as starting point for the nominal fit. We use an ARGUS
function (Eq. 5.11) for m,,;ss, a second order polynomial for mpg and a double Gaussian
for [,.

We parameterize the B-background using the selected events on full generic B°B°
and BT B~ Monte Carlo sample after removing the signal events. We use an ARGUS
function for m,,;ss, a second order polynomial for mpg and a double Gaussian for [5. Since

we have few events surviving the selection on this Monte Carlo sample, and the [, shape
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is determined by the rest of the event, which is the same for signal and B-background
events, we use the same PDF adopted for the signal, of which we have a large statistic
sample. We will use an alternative parameterization for [, to evaluate the systematic
effects. The fraction of B-background events made by neutral B decays have the same
time-evolution structure as signal, while the charged decays have not a time-evolution
at all, and mis-reconstructed neutral B decays can have an intermediate structure. We
assume the same PDF of the signal for At, and we will account for possible differences in

the systematic uncertainties. The distribution is shown in Fig. 7.11.
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Figure 7.11: B® — KSKOK9(7°7%) sub-mode: distribution of At pull for B B Monte
Carlo events, with BReco parameterization superimposed. Top: linear scale, bottom:
log;, scale.

All the other parameterizations are shown in Fig. 7.12.

7.3.2 Validation Studies

We first validate independently the fits to the single sub-modes, then the simultaneous fit
to the combined KYK?K? sample. For briefness, and since the physics result of this work
is the CP asymmetry of all KYK2K? events, we present here only the validation studies

of the combined fit.
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As we have described for B — K™K~ K analysis in Sec. 6.7.1, we perform a number
of toy Monte Carlo experiments to verify that the fit determines the signal parameters
without biases and to compare the expected uncertainties with the results. We generate
signal and background yields according to Poisson distributions around the expected
values for 350 fb~': NJ~ = 150, Ng) = 65, Ny = 734, Ny = 4796, and Ny’ = 49
with S = —0.7 and C = 0.0, as expected in the Standard Model. The results are shown
in Table 7.7. We expect an error on S (C) of o(S) = 0.28 (¢(C) = 0.18) and we find

o(Ngy) =13 and o(NJ)) = 12.
K Pull O Pull Average error
N;f; 0.003 £+ 0.041 1.054+0.03 13.3
N;{ 0.007 = 0.037 0.96 £ 0.03 27.5
NSZ-% 0.040 = 0.038 1.00 £ 0.03 11.7
N(%) 0.023 £+ 0.038 0.97 4+ 0.03 69.9
N —0.05 = 0.04 1.05 + 0.03 15.4
C —0.032 £ 0.016 1.04 £0.01 0.19
S —0.06 £ 0.04 1.00 £ 0.03 0.29

Table 7.7: Results on the yield and S and C' of the toy Monte Carlo experiments for the
combined fit (when we generate S=-0.7 and C'=0.0)

These toy Monte Carlo experiments show the fact that the likelihood is able to extract
the signal informations (both yields and CP asymmetries) from data without significant
biases. On the other side, they cannot find problems associated to wrong parameteriza-
tion of the PDF’s or effects due neglected correlation between variables, since the events
generated in toy Monte Carlo experiments according the PDF’s are, by definition, un-
correlated. For this purpose, only fits to control samples can give a reliable answer on
the performances of the fit. We achieve this validation with embedded toy Monte Carlo
experiments, where we mix signal Monte Carlo events to background events generated ac-
cording PDF’s. The signal Monte Carlo events we embed in the toy datasets is produced
with CP asymmetry parameters S = C' = 0. We show the results in Table 7.8. The plots
for pulls and average errors are shown in Fig. 7.13 and 7.14 for the yields and in Fig. 7.15
for the CP violating parameters S and C'.

These tests show that possible correlations in the event variables are not a problem
for this fit. A possible problem which can arise in cases when the CP parameters are

near the physical boundary (C? 4+ S? ~ 1), where the fit show non linear effects. This
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Figure 7.13: Results of toy Monte Carlo experiments with signal Monte Carlo events
embedded for the combined fit on the yields of the KCKYK2(7Tn~) sub-mode. Pulls
(top) and errors (bottom) for Signal (left) and continuum background (right).
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HPull

O pull

Average error

0.042 £+ 0.040
—0.006 £ 0.041
0.109 + 0.037
—0.016 £ 0.040
—0.17£0.04

—0.012 £ 0.041
—0.05 £0.04

1.03 £0.03
1.08 £0.03
0.96 £ 0.03
1.02 £0.03
1.04 £0.03
1.06 £0.03
1.10£0.03

13.3
27.5
11.7
69.8
15.1
0.18
0.28

Table 7.8: Results on the yield and S and C of the toy Monte Carlo experiments with
signal Monte Carlo events embedded for the combined fit.
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Figure 7.14: Results of toy Monte Carlo experiments with signal Monte Carlo events
for the combined fit on the yields of the K¢KJK¢(n"7%) sub-mode. Pulls (top) and
errors (bottom) for Signal (left), and continuum background (middle) and BB background

(right).
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Figure 7.15: Results of toy Monte Carlo experiments with signal Monte Carlo events

embedded for the combined fit on the CP asymmetry parameters.
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effect is mostly evident in the fits to the single mode B® — KSKJKY(7°7?), where the
uncertainties on the CP parameters are so high that the fitted values can easily hit the
physical boundary.

This is reduced to a negligible effect when the two samples are combined, with a
consequent sizable decrease in the statistical uncertainty. We study this behaviour with a
linearity test. This test consists in knowing by toy experiments the relation between the
true and the fitted value of S and C, and eventually correct the results of the unblinded
fit as a function of the value we get. In order to do this, one has to scan the entire
parameter space of S and C' and obtain the averaged value (with an associated error) on
St and Cly for different values of Sy and Cypye. Since S and C' can be considered as
uncorrelated, one can get the corrections separately. In particular (see below), a linear fit
on the two Xy vs Xyye planes (X =5, C) gives a good representation of such relation.
The largest the non liner effect of the fit is, the largest will be the deviation of the two
parameters py and p; of the fit from the expectation values (0 and 1 respectively).

In order to quantify the slope, we performed a set of toy Monte Carlo experiments
with different generated values for S and C', scanning the allowed parameter space. In
top Fig. 7.16 the fitted vs. generated values of S and C' vs. generated values are shown
for B — KYKJK2(m7°) sub-mode only. The deviation from the expected slope (X =
Xirue) 18 clear for those points near the physical boundary. When we repeat the test for
the combined sample of KYKYK?, this effect disappears. However, we can use the relation
Xtrue = {(Xit) as a calibration curve to correct for the (negligible) fit bias once we know
the central value from the fit to on-resonance sample. We will account in this way for the

“fit bias” systematic uncertainty.

7.4 Fit Results for Yields and CP Asymmetries

The selected sample on the on-resonance dataset is made by 786 KYKJKS (7w n~) candi-
dates and 4550 KOKOK2(m'7?) candidates. First we perform the maximum likelihood fit
on the separate datasets to extract the event yields and the CP asymmetries. Then we
perform the fit on the combined sample.

The results of these fits are reported in Table 7.9.

The event yields are consistent with the expected ones with the previous measurements

of the B — KYK?K? branching fractions [21].
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K)KIK(ntm™) KIKYKY(n7%)  Combined

Ng 125 + 13 64 + 12 —
Ng 732 4+ 28 4942 + 77 —
Ngp = 14 + 32 -
S -1.06 T950 0.36 + 0.54  -0.71 £ 0.24
C -0.08 193 0.23 + 0.38  -0.02 + 0.21

Table 7.9: Events yields and CP asymmetry parameters obtained in the fit to 374 x 108
BB pairs. Statistical errors only are shown.

In Fig. 7.17 we show the distribution of the selection variables mgs, AE and F af-
ter applying the ¢Plot-weighting technique[80], for the signal and continuum background
components. In Fig. 7.18 we show the distribution of the selection variables m,,;.s, AF,
Iy after applying the ;Plot-weighting technique for the signal, continuum and BB back-
ground components.

We evaluate the statistical significance of CP violation to be 2.60 by calculating the
2Alog L variation when fitting data with S and C fixed to zero. We also estimate the
consistency of the two sub-samples. In order to do this, we generate a number of toy Monte
Carlo experiments in which we assume that the measured values for the CP parameters
on the combined data sample are the true values (generation values). We find that the
two sub-samples agree within 1.6 o.

We show in Fig. 7.19 distributions of At for B’-tagged and B°-tagged events, and the
time-dependent CP asymmetry, after signal ;/Plot weighting technique, for the combined

data sample.
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Figure 7.17: mgs (top), AE (middle), and F (bottom) ¢Plots for B® — KC KK (ntm™)
with on-resonance datasets. The left column is signal and the right column is continuum
background.
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7.5 Systematic Uncertainties

We evaluate systematic uncertainty on the CP asymmetry parameters S and C' only on the
combined fit. In the following we describe the main sources of systematic uncertainties,

and in Table 7.12 we report the summary of them.

Event Selection and Data-Monte Carlo Agreement

We evaluate the uncertainty associated to the knowledge of fixed parameters entering the
likelihood, related to the size of the available control samples with which we determine
the PDF parameters. We evaluate this systematic uncertainty smearing the PDF’s by
one standard deviation and repeating the fit.

We account for possible disagreement between data and Monte Carlo in the description
of the distribution of the variables defining the signal component of the likelihood fit. For
the KYKOK%(rTn~) sub-mode the purity allows to fit the the means of mgg and AFE
for the core Gaussians directly on data, so they do not contribute to the systematic
uncertainties.

For the KYK2K?(n%7%) sub-mode we use, as data control sample, B® — Ji K? de-
cays, reconstructing K2 — 7%7° in order to have the same topology of the signal in the
kinematic variables. We check that the two decays have consistent distributions of m,,;ss
and mp comparing the shapes for the two signal Monte Carlo samples In Table 7.10
we show the comparison between signal parameters extracted by signal B® — KYKYK?
Monte Carlo and data B® — J/¢K2(n%7%). They are in quite good agreement and in
the nominal fit we use the values from the control sample, and we use the shape from the
signal Monte Carlo as an alternative parameterization to evaluate the systematic uncer-
tainty associated to my,;ss PDF. In Fig. 7.20 we show the m,,;ss distributions for signal
BY — KYKOK2(m7%) Monte Carlo events and B — J/ip KO(7°7") on-resonance data.

In the case of mp, there is a sizable difference between the shape on signal Monte
Carlo and data. In particular, as expected, the simulation fails in reproducing the central
value of the distribution. Concerning the other parameters, a simple fit with the four of
them (20 and 2« of the Cruijff function) simultaneously floating might overestimate the
disagreement, because of the correlations between them. Because of that, we perform the
fit on data fixing the two a’s to the output of the fit on Monte Carlo and we use the

variation on the ¢’s as an estimation of the (dis)agreement.
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K{KJKY Monte Carlo

J/YK? data

MMiss
m (GeV/c?)
o_ (GeV/c?)
o (GeV/c?)
a_
o4

5.2803 £ 0.0001
0.0049 £ 0.0001
0.0050 £ 0.0007
0.2683 £+ 0.0217
0.2281 £ 0.0069

5.2793 +/- 0.0008
0.0045 +/- 0.0007
0.0062 /- 0.0006
0.1816 +/- 0.0324
0.2111 +/- 0.0113

Table 7.10: Comparison of m,,;ss parameterizations from signal Monte Carlo and B® —
J/PpK?(n%7%) data control sample. Parameters are for the Cruijff function (Eqn. 6.15) we

use as the my,;ss PDF.
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Figure 7.20: Comparison between m,,;ss distributions for signal Monte Carlo events for

BY — KYKUKY(m7%) decays and B® — J/¢ K2(m7?) data control sample.
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mp BY — KYKYK%(m7%) Monte Carlo BY — J/i K2(7%7%) data
m (GeV/c?) 5.2700 £ 0.0002 5.2843 £ 0.0053
o_ (GeV/) 0.0474 + 0.0018 0.0777 =+ 0.0099
o (GeV/c?) 0.0244 +£ 0.0007 0.0243 £ 0.0053

o 0.2683 £ 0.0217 0.2683 (fixed)

ay 0.2279 = 0.0069 0.2279 (fixed)

Table 7.11: Comparison of mp parameterizations from signal Monte Carlo and B —
J/YK?(7%7%) data control sample.

In Table 7.11 we show the parameters found on signal Monte Carlo and B® — J/¢K?
on resonance data, and in Fig. 7.21 we show the mp distributions for the two samples
and the fitted PDF’s. We model the background for B® — J/¢K2(77?) data with a

second order polynomial, as done for our nominal fit model. Considering the fact that

Events/15 MeV/c?
N
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g
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mg (GeV/c?) 515 5.2 5.25 53 535 N (5(;;\”02)

Figure 7.21: Comparison between mp distributions for signal Monte Carlo events for
BY — KYKYKY(n%7Y) decays and B® — J/yK%(m7%) data control sample.

the mean value in the case of Monte Carlo is not reliable, we think that it can be taken
as it comes from J/¢ K data even when performing KKYK? nominal fit. From Monte
Carlo study we see that J/¢K2(7%7%) Monte Carlo does not reproduce well the signal
KYKOK?(m%7") Monte Carlo, so we cannot use the central values of the os from the data
control sample. Because of that, considering that the difference between data and J/¢ K
Monte Carlo for o_ and o is not statistically different than zero and that the error on
that is dominated by the fit on data, we conclude that we can use for the nominal fit the
values on « and o parameters as they come from KJK?K2(m7%) Monte Carlo. For the

systematics, we associate as an error to each parameter the maximum between the errors
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of the two fits in Tab. 7.11.

CP Asymmetry of the BB background

Only the KOKK2(n%7%) sub-mode has a non-zero BB background contribution. In the
nominal fit we assume that the CP parameters of the BB background events are both
zero, since we have a poor knowledge on CP content of the modes which constitute this
component. The fraction of events which comes from charged B decays can only show
direct CP asymmetry, while the part of the neutral B decays which is well reconstructed
has a non-null lifetime and can then show both direct CP asymmetry and mixing-induced
CP asymmetry. We estimate from BB studies that about half of the contribution comes
from neutral B decays, and we assume that half of them have a prompt decay (we achieve
this in the fit dividing by half the B° lifetime for the BB component). We assume
complete ignorance on the CP parameters and vary Szz and Cpzp uniformly from -1 to 1,
and take the largest deviation on signal S and C' as systematic uncertainty. We find that
signal S depends only from BB S and it is almost uncorrelated with the value of BB C

(and vice versa for signal C').

Vertexing Method

We have shown in Sec. 2.3 and in Fig. 7.8 that the standard At resolution function
taken from the BReco sample describes quite well also our signal events for which the
vertex has been defined with the Beam Spot Constraint (BC') technique. To quantify the
agreement between At evaluated with the standard vertexing technique and the one with

BC vertexing, we make use of the mangled B® — J/i) K2 sample. We define the quantity:

AtBC - Atnom
/ +2 2
UAtBC - aAtnom

Assuming the nominal reconstruction (At,.,) as an estimation of the true value, y*(At)

X*(At) = (7.7)

is a variable which follows a Gaussian distribution with mean value zero and unitary width
(pull of At). Fig. 7.22 show the distribution of y*(At) in Monte Carlo and data events
for Class I and Class II for B — J/ip K? decays. The distributions on data are about
10% wider than in Monte Carlo. From this distributions we can extract the scale factors
necessary for the At error of the mangled events to make the pull width agree with Monte

Carlo. They are 1.0375 for Class I events and 1.129 for Class II events. Taking the relative
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Figure 7.22: Distribution of At pulls (BC-minus-nominal) for B® — J/) K? events in data
(top) and Monte Carlo (bottom) events for Class I (left) and Class II (right).

fraction of Class I and II events in the combined B® — KYK?K? sample into account
we can obtain an overall scale factor. The final signal sample, as fitted in on-resonance
dataset, is made by 65.3% of KX KOK?(n+7™) events and 34.7% of KO KK ?(n%7Y) events.
The KOK2K?(7t7~) mode has 89.5% of Class I events and 9.1% of Class II events, while
K2KOK2(7%7%) mode has 79.0% of Class I events and 14.5% of Class II events. This
brings to a fraction of 85.9% of the K2K?K? signal events in Class I and 14.1% in Class
II. Then we can apply an average scale factor of 1.050 to our signal At PDF. We repeat
the fit on the on-resonance dataset with the scaled At PDF and take the difference in CP

parameters as the systematic error.

Resolution Function and Flavour Tagging

In addition to possible disagreement between the BReco resolution function and the true
one for signal decays, we also account for the finite statistics with which the parameters
of that PDF is evaluated. As has been done for the other PDF’s, we smear its parameters

by one standard deviation and take the deviation on the CP parameters as the systematic
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errors.
With the same procedure we account for systematic uncertainties associated to flavour
tagging parameters.
We account for the uncertainties on B lifetime and mixing frequency Amy varying

them by one o, where o is the uncertainty on the world average on their measurements [21].

SVT Alignment and Beam Spot Position

We evaluate the systematic uncertainties associated to possible misalignment’s in the
layers of the vertex tracker and on the knowledge of the beam spot position following the

same procedure described for B — K*K~K° in Sec. 6.9.

Fit Bias

We account for possible neglected correlations in the fit and eventual bias with toy Monte
Carlo experiments in which signal full Monte Carlo events are embedded in the fit, together
with BB background events for the K?KYK?(7%7%) sub-mode. We correct the central
value obtained from the fit with the curve S(C)i vs. S(C)" shown in Fig. 7.16, using

the central value extracted from the fit to data.

Tag Side Interference From Doubly CKM Suppressed Decays

Since the size of systematic effect due to possible interference in the tag side does not
depends on the details of the fit, but just from the expectation values of the CP asymme-
tries, which are the same than for B — KT K~ K° decays, we take the uncertainty from

that analysis.

7.6 Summary of Results

In the fit of B — KYK2K? decays, reconstructed in the two sub-modes KYK K2 (7 7™)
with all the three K? decaying into 7t7~ and KYKYK2(7%7Y) with one K? decaying into
7979, we have measured the time dependent CP asymmetries.

We found the mixing-induced CP asymmetry parameter S = —0.71 £+ 0.24 £ 0.04
and direct CP asymmetry parameter C' = —0.02 £ 0.21 £ 0.05, where the first error is
statistical and the second one is systematic. Both are in agreement with the Standard

Model expectations, which predicts, for this pure b — s transition, S = —sin28 =
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a(S) a(C)
Vertex reconstruction 0.016 0.003
Resolution function 0.005 0.007

flavour tagging 0.009 0.015
SVT alignment 0.016 0.008
IP position 0.004 0.001
Fit correlation 0.004 0.025
BB CP 0.007 0.005
Amg and Tgo 0.004 0.007
Tag-side interference  0.001 0.011
Bep(4-) PDE’s 0.009 0.019
Beop(oo) PDF’s 0.024 0.024
Total 0.037 0.046

Table 7.12: Summary of systematic uncertainties on S and C.

—0.685+0.032 and C' = 0, where 3 is the CKM parameter measured with high precision
in B — [cc] K° decays [22].



Chapter 8

Measurement of Decay Rate of
BY+ — ¢xY%/* Decays

B — ¢ transitions take place through b — d penguin dominated amplitudes, which can

be written in the Standard Model as [86]:

A(pr™) = ViV (P = BAY) = ViaVip Py (8.1)
Alpr®) = =VaaViy (P = BEA5) = ViaViy Py (82)
where PQ(GIM) labels the Renormalization Group Invariant (RGI) quantity corresponding

to charming (GIM) penguin emission topologies and E A to (OZI suppressed) emission-
annihilation topologies. In Fig. 8.1 we show the main Feynman diagram for this process.

All these contributions are expected to be smaller than the usual penguin and annihilation

Figure 8.1: Main Feynmam quark level diagram responsible for B — ¢m and B — ¢K:
the flavor-singlet penguin.

contributions that enter, for instance, into B — ¢K decays, because of the additional
factor A (the sine of the Cabibbo angle) with respect to the leading term of b — s

channels.
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This strong suppression in the Standard Model and the fact that the main contribu-
tion proceed through a penguin amplitude, make B — ¢7 decays particularly sensitive to
new physics contributions. In particular, a measurement of B(B — ¢m) = 1077 would be
evidence for non Standard Model contributions to the amplitude, for example supersym-
metric ones [87]. Upper limit can also be useful to set new bounds on R-parity violating
models in Supersymmetry (see Sec. 9.3). The actual BABAR integrated luminosity makes
such a branching ratio possible to be measured.

The study of the processes BT — ¢t and B® — ¢ is also important to under-
stand the theoretical uncertainties associated with measurements of CP asymmetries in
B? — ¢K° decays. The B — ¢ decay amplitudes are related to the sub-leading terms
of the B® — ¢K° decay amplitude and can therefore provide stringent bounds on pos-
sible contributions to the time-dependent CP asymmetry in BY — ¢K° [88], which we
have described in Chapter 6. In particular, the measurement of the decay rate of these
modes can limit the contribution of the electroweak penguins in the B — ¢K° decay
amplitude [86].

Since the expected yield of this decay is very small, and we are studying only a narrow
region in the KT K~ invariant mass around the ¢(1020) resonance, we do not perform a
Dalitz plot analysis of this decay. Instead we adopt a so-called quasi-two-body approach,
which means we treat the ¢(1020) as a standard particle, neglecting the interference effects
within the three-body K™K ~r final state. This is to some extent justified by the very
narrow width of the ¢(1020) resonance. We will treat the neglected interference effects as
a systematic uncertainty.

For this analysis we use the data collected by BABAR detector during Runl-1V periods,
corresponding to 232 x10° BB pairs.

8.1 The Event Selection

In this section we describe the selection of the neutral and charged B decays. Since
the BY — ¢m° decays involves a 7° in the final state, we decided to use Mm;ss and mp
kinematic variables, which we have shown to be better than mgs and AE (see Sec. 7.1.2)
in presence of photons in final state. Since this set is not worse than mgs-AFE in the
case of all-charged final state, as in the case of B — ¢m decays, for consistency with the

neutral mode we also use m,,;ss and mp.
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The reconstruction of both neutral and charged mode starts from the selection of a
pair of oppositely-charged kaon candidates in the event. In the quasi-two-body approach
they are considered as a ¢(1020) candidate if the invariant mass mg+ - is within 15
MeV/c? of the nominal ¢(1020) mass value [21]. This requirement corresponds to about
three times the observed width in the K"K~ invariant mass spectrum (see Table 6.12).
In order to have a better purity, we apply the same particle identification criteria on the
kaon candidates we have optimized for B® — K+ K~ K analysis in the narrow region of
the my+ k- dominated by the ¢(1020) (see Sec. 6.3.2). These PID requirements are quite
loose due to the good signal-to-background ratio in this region. We have shown in the
BY — KT K~ K analysis that this mg+ g region has two main contributions: the ¢(1020)
and the f5(980) (see Table 6.20). The ¢(1020) is a vector resonance (P-wave), which has a
typical distribution of the helicity angle proportional to cos? 8. fo(980), which is a scalar
resonance (S-wave), has a flat distribution, as the continuum background, which is made
by random combination of particles. The distributions of cosfy for signal and continuum
events are displayed in Fig. 8.2. We do not apply selection on cosfpy, but we use this

information in the fit.
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Figure 8.2: Distribution of | cos 0| for (a) signal Monte Carlo B — ¢7” and (b) contin-
uum background events.

Then we form a B? (B") candidate combining the formed ¢(1020) candidate with a
70 candidate (charged track). We describe these selections in the Sec. 8.1.1 (Sec. 8.1.2).
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8.1.1 Selection of B? — ¢=°

We reconstruct a 7 candidate from a pair of energy deposits in the EMC identified as
described in Sec. 5.2.2. We then require the invariant mass of the photon pair to be within
110 MeV/c? and 160 MeV/c?, which means about three times the observed width in the
7 invariant mass spectrum [21].

0

We combine the 7¥ candidate with the ¢ candidate to form a B° if the composite

satisfies loose requirements on the consistency with the BY mass:
o |mp —mEPY < 150 MeV/c?;
o 5.11 < Mmypiss < 5.31 GeV/c?;

as usual, these requirements retains, together with the most of the signal events, also wide
sideband regions for the background characterization.

Also these decays suffer mostly from background coming from ¢g fragmentation, then
we use the event shape variables to reject it. We use the ratio of Legendre monomials
lo = Lo/ Lg, described in Sec. 7.1.2. In this case we do not apply a selection on | cosfg|,
but we make a cut directly on Iy < 0.55 which is approximately 90% efficient on signal
decays. We use the shape of the surviving events in the maximum likelihood fit. Due to
the presence of a 7 in the final state, which can produce energy leakage at the borders
of the geometrical acceptance, the kinematic variable mpg shows a small difference when
the BY decays in that region. Also oa; shows a small dependency on the polar angle,
while [, is uncorrelated. This correlation can be removed with a very loose cut on the the
polar angle of the B® meson: |cos %] < 0.9 (typical distributions for B and ¢g events are
shown in Fig. 6.3). This is illustrated in Fig. 8.3.

We also apply the two typical requirements which are applied in a time-dependent
analysis: |At| <20 ps and oay <2.5 ps. These requirements have some rejection power

against the continuum events because they typically have a badly formed B vertex.

70 Efficiency Corrections

Since in this analysis the target is to measure the rate of the decay, we pay also attention
to possible disagreement between data and Monte Carlo reconstruction efficiency. Small
contributions come from the tracking efficiency, which will be treated as systematic uncer-

tainties, while a large contribution comes from the 7° reconstruction efficiency. We apply
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Figure 8.3: Average values for m,,ss, mp, la, o(ay for selected B® — ¢n° signal Monte
Carlo events.
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a correction to it, which has been studied by other analyses in BABAR. The correction, 7,

depends on the 7° momentum:
i = 0.9735 + 0.006236 - pro = 0.03(syst) (8.3)

where 7 is the ratio e(data)/e(MC). Fig. 8.4 shows the 7° momentum in the laboratory

0

frame in the signal MC. The average momentum for 7° coming from B? — ¢n is 2.84

GeV/e, leading to an efficiency correction of n = 0.991 £ 0.03 (syst).
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Figure 8.4: Distribution of 7° momentum for signal Monte Carlo events

Resolution and Scale Corrections

The resolution of mpg variable, which is the variable mostly sensitive to energy leakage
in the EMC by neutral particles, varied sensibly during the BABAR’s Run periods. In
particular, there is a considerably large difference between the early Run I and the rest of
Run periods, as it is illustrated in Fig. 8.5. We take into account these differences using
a Monte Carlo sample which is weighted with the different Run periods luminosity.
These resolution effects have been studied using large data control samples. These
studies provide corrections to apply to simulated events in order to have a better agree-
ment with data. These corrections produce a significant effect only in mp (Fig. 8.6a),
while do not change m,,;ss, Wwhose resolution is forced to be similar to the the beam one

because of the B® mass constraint (Fig. 8.6b).

Summary of Reconstruction Efficiency and Best B Selection

In Table 8.1 we show the summary of the reconstruction efficiencies for the different
requirements and the final one, after having applied the 7° corrections. The final efficiency

is approximately 30%.
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(a) (b)

2000

—— Not Corrected

—— Not Corrected

=
Q
>

o~
01800

——— EMC correction applied

]
E1600

©1400
8
21200

=
o
w

Events / 6.7 MeV/c?
=
o

0>.>1000
i
800
600 10
400

200

NPT EAPRRURTI A IR I O RN PRI AU 11
54 512 514 516 518 52 522 524 526 528 53,
mg (GeVic’) my,ss (GeV/c?)

Figure 8.6: Distribution of (a) mp and (b) m,p;ss for B® — ¢7° signal Monte Carlo events
before and after the neutral corrections.

Most of the selected events have only one candidate. The average multiplicity, both
on Monte Carlo and data, is 1.003. In events where more than one B° is present, we
choose the one which has the best x? on the vy invariant mass with respect to the 7°

nominal mass [21].

8.1.2 Selection of BT — ¢n™

In order to form BT — ¢n* candidates we combine the formed ¢(1020) composites

with a charged track. In this way, the main background arise from another charmless
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Selection e(BY — ¢n?)
pre-selection 0.451 £ 0.001

Kaon PID 0.976 £+ 0.001

mcr- —my % <15 MeV/e?  0.909 + 0.001
| cos O3] < 0.9 0.980 £ 0.001

ly < 0.55 0.886 £+ 0.001

|At] < 20 ps 0.973 £+ 0.001

oar < 2.5 ps 0.941 £ 0.001

Imp — mEPG) < 150 MeV/e?  0.937 % 0.001
5.11 < Mypiss < 5.31 GeV/c? 0.999 + 0.001
Total efficiency 0.298 + 0.001

7Y correction 0.991 £ 0.03

Total efficiency (corrected) 0.295 £+ 0.008

Table 8.1: Reconstruction efficiency, as estimated from B? — ¢7° signal Monte Carlo
events. Efficiency correction related to m° reconstruction is applied.

decay, which, although being a rare process itself, has a branching fraction which is
one order of magnitude larger than the one of the signal we want to explore: BT —
¢K™*. This branching ratio has been measured in the full Dalitz plot analysis of Bt —
KTK~K™ [75, 76] to be (world average) B(Bt — ¢K*) = (9.3 +1.0) x 107°.

The kinematic difference between the ¢m and ¢K combinations provide a handle to
separate the particle content of the candidate B decay. We reconstruct the BT — ¢h™,
where h = m, K, assigning to the h* track the pion mass. Then the mp distribution
peaks at the correct BT mass for BT — ¢ events, while it is shifted by ~ 42 MeV/c?
for Bt — ¢K™T events. This is shown in Fig. 8.7. Also, the incorrect mass hypothesis
causes this shift in mp to exhibit a momentum dependence, which produces a smearing
of the distribution for the incorrect mass hypothesis which have to be evaluated event by

event. If we call m}5“ the reconstructed mp value with the pion mass hypothesis, with

ht the true mass hypothesis on the track, the true mpg value would be:

true __ reco ht nt

The dependency of the mp shift from the momentum of the ht tracks can be expressed

analytically by:

mht — T = \/E; +m2, 4+ 2E,Epe — |pyl2 — 255 - pice (8.5)

which will be used for event by event shift of the mpg PDF mean in the maximum likelihood
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Figure 8.7: Distributions of mp variable for (a) B — ¢n decays and (b) BT — ¢K™
decays, reconstructed assuming that the track from B decay is a pion.

fit.

In order to separate ¢m and ¢K final states we cannot rely only on the difference
in mp, but we have also to exploit the particle identification of the charged tracks (see
Sec. 5.1.1). The high momenta of the tracks in these decays limit the viability of the
SVT and DCH dFE/dx measurements as pion/kaon discriminators for these signal decays.
Therefore DIRC 6. measurement will serve as our particle identification tool, dominating
the separation of the two decay modes. In order to have the best sensitivity to the tiny
BT — ¢nt signal, we do not apply a requirement on the kaon PID selectors, as we do
for the ¢ daughters, but we parameterize the DIRC information in the likelihood and we
will fit simultaneously ¢7t and ¢ K+ signals.

Parameterizations of measured 6., obtained from highly pure data control samples of
charged pions and kaons, are used to calculate 7 and K likelihoods of each track. These
control samples are made by reconstructed decay chain D** — D" — (K~ 7 ")n " using
only kinematic information and no particle identification. The D** candidates are built
through four-momentum addition of tracks with appropriate mass assignment defined by
the charge of the slow pion from the D* decay. A two standard deviation cut on the mass
difference of the D* and D (oay = 0.9 MeV/c?, see Fig. 8.8), which is measured well
due to the small momentum of the slow pion, removes most of mis-reconstructed D"’s.
Requiring that the D° momentum in the CM frame is > 2.5 GéV/c isolates the contin-
uum D* candidates and eliminates BB events which typically have higher combinatorial

backgrounds. Removing events where the kaon track is in line with the D° flight direction
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in the D rest frame provides further suppression of the combinatorial background. The
cosine of this angle cos 6} is required to be < 0.8. These selections produce a D° sample

which has a purity of &~ 96% (see Fig. 8.8b). The most recent study of this control sample
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° g 6000
S12000 |
n o
= L
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£ 1500 g
5 .1 4000
>
m
1000
2000
500
4 .
0.144 0.145 0.146 0.147 0
GeV/c2 1.8 1.85 19 1.95

AM 2
M(Kr) GeV/c

Figure 8.8: The (a) AM = M(D*) — M(D°) mass difference and (b) D° mass in the
control sample used for studying DIRC 6. measurements.

calibrates the DIRC response by separately parameterizing the 6. resolution, systematic
bias, and charge dependence of the measured 6. of kaons and pions. We only consider
tracks which have sufficient signal Cherenkov photons (N, > 5) and 6. > 0.1 rad for
a good 6. measurement. The 7,77, K+ and K~ distributions of the 6, pulls, defined
as (0, — 05" — ji-  (cosB)) /o, where §, and 827 are the measured and expected 6,
respectively, are studied separately in bins of track polar angle cos 6. ,ui 5 and ofé ) repre-
sent the mean and the measured bias and resolution of the 6. pulls, whose only observed
dependence is on cos 8, while they are not correlated with momentum. They are measured

by a fit with double Gaussian functions.

Pull distributions for the whole sample, which provide likelihoods for discriminating

pions and kaons, are shown in Fig. 8.9.
We retain only events which are within 4 standard deviations (ofé ) of these pulls.
In order to reject the continuum background, we apply the requirements on [y < 0.55
and | cos 6| < 0.9, like in the case of B® — ¢n°. The final efficiency for reconstructing

Bt — ¢nt and BT — ¢K* events are approximately 37% and 36%, respectively. The
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Figure 8.9: The corrected 6, pull distributions for (a) positively and (b) negatively charged
pions (top) and kaons (bottom). The fits are to double Gaussian functions.

breakdown of the efficiencies is reported in Table 8.2.

The slight difference in the efficiency between BT — ¢nt and BT — ¢K T is due to
different combinatorial. The main difference is in the PID - m g+ - requirements efficien-
cies, whose efficiencies are different if compared separately, but their product is about the
same. After the pre-selection the candidate multiplicity is similar: 1.36 for Bt — ¢nt
and 1.40 for BT — ¢K*. Also, the KT K~ invariant mass resolution in the ¢(1020) region
is the same in the two cases. The difference comes from the fake combinations at high
values of invariant mass (we accept only events within 15 MeV/c? from nominal ¢(1020)
mass), which are more for BT — ¢t than for Bt — ¢ K. In Fig. 8.10 the distribution
of K*K~ invariant mass in the whole region after the pre-selection and after the PID
requirement is shown for the two Monte Carlo samples. The PID removes a fraction of
the fake combinations at high invariant mass of B* — ¢n", while it has no effect on
BT — oK.

The event multiplicity after this selection is applied is 1.004 BT candidate/event.
When more than one candidate is present in an event, we choose the one with the smallest
x> of the ¢(1020) — K*K™ mass. Since we want to use the lineshape of the ¢(1020)

resonance in the maximum likelihood fit, we have checked that this selection of the best
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Selection (BT — ¢K™) (Bt — ¢K™)
pre-selection 0.748 £ 0.001  0.721 £ 0.001

Kaon PID on ¢(1020) tracks 0.932 £ 0.001  0.847 + 0.001
M+ k- — ngG\ <15 MeV/c*  0.774 4+ 0.001  0.887 + 0.001
| cosfp| < 0.9 0.983 £ 0.001  0.983 + 0.001

ly < 0.55 0.876 + 0.001  0.876 + 0.001

imp — mEPY| < 150 MeV/c? 0.973 £ 0.001  0.980 + 0.001
5.11 < Mypiss < 5.31 GeV/c? 0.999 + 0.001  0.999 + 0.001
6. > 0.1 rad 0.853 £ 0.001  0.857 + 0.001

N, >5 0.966 £ 0.001  0.976 + 0.001

0. outlier 0.986 + 0.001  0.987 + 0.001

Total efficiency 0.362 + 0.001  0.371 £+ 0.001

Table 8.2: Reconstruction efficiency, as estimated from B™

Monte Carlo events.
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Figure 8.10: K*K~ invariant mass in the whole kinematically allowed region for (a)
Bt — ¢K* and (b) BT — ¢nt Monte Carlo events. Dots: the distribution after the
pre-selection. Histogram: distribution after the PID requirements.
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candidate, which choose systematically the one with the mg+ - nearest to the nominal
¢(1020) mass, does not introduce a narrowing of the lineshape. Because of the very low
multiplicity this does not constitute a problem. We verify this assumption with a fit to
the K™K~ mass for signal Monte Carlo events with and without the best BT selection

which return a consistent width.
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8.2 BB Background

We study the contributions to the background due to mis-identified other B decays from a
sample of generic B°B® and BT B~ decays equivalent approximately to five times the used

data sample. We study separately the contributions to the charged and neutral mode.

8.2.1 BB Background for Bt — ¢ht

We study the background contributions removing from the sample the signal events.
According to the adopted strategy, we consider as signal both BT — ¢7t and Bt — ¢K*
decays.

Since the efficiency for the B background modes is very sensitive to the definition of
the signal region, we take particularly care of those modes which present a concentration
of events near the B invariant mass in the m,,;ss and mp variables. According to this

criterion, starting from the whole fit region (FR)
o 5.11 < My < 5.31 GeV/c?
o |mp —mEPY < 150 MeV/c?
we define a reduced signal region (SR)
® 5.26 < Mypiss < 5.30 GeV/c?
e 5.20 < mp < 5.35 GeV/c?

where the peaking background events clusters. The events which are selected outside the
signal region come usually from random combination of particles from the two different
B mesons, so they have a distribution in mpg which is like a gg event. We define as
combinatorial all these events.

The composition of the selected sample is shown in Table 8.3, where the contributions
have been rescaled at the luminosity of the used data set (212 fb™'). Since the generic
Monte Carlo sample gives too few events to study in detail the reconstruction efficiencies
of these modes and the shape of their discriminating variables, we generate a large number
of Monte Carlo events for the “peaking” modes BT — fyrt, Bt — aon™, Bt — oK™,
BT — fo KT and apply the selection on them. The fyh' samples are generated assuming

the fo mass and width values taken from BES experiment data (Table 6.12 and [79]).
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Decay mode Fit Region Signal Region BF used (107°)
ot 40.1 38.9 1 [MC]
KT 349.6 316.3 9.3 £ 1.0 [PDC]
fo(980)7 " 2.9 2.5 (3.9) 1 [MC] (]MC with BES shape])
a0 (980) 7+ 2.7 2.5 1 [MC]
£o(980) K+ 25.7 24.9 (45.8) 10 [MC]
DOr+ 10.7 0.6 5300 [MC]
DOt 9.3 0.6 4600 [MC]
DOyt 4.7 0.4 13400 [MC]
D+ 0.4 0 13400 [MC]
combinatoric 2.7 0 15500 [MC]
Total 59.1 31.5

Table 8.3: Events selected by B¥ — ¢h* selection in the whole BT B~ generic Monte
Carlo samples, scaled to an equivalent luminosity of ~ 210fb~!. In the total number of
BT B~ background events is not included the number of Bt — ¢K™ events, because in
this case they are considered as signal. The numbers in parenthesis for BT — f(980)h™
are evaluated using the fo(KTK~)/¢(KTK™) ratio reported in [76] and the efficiency
correction due to the difference in the fy lineshape between Monte Carlo and BES experi-
ment data [79], which will be used as nominal shape. The rest of the numbers comes from
branching fractions used in the generic Monte Carlo, denoted as [MC]| (usually values
from [21] or reasonable assumptions from theoretical estimations).

Decay mode generated €

ot 121000 0.371 £ 0.001

oK™ 163000 0.362 £ 0.001

for™ 17000 0.118 4 0.002 (0.024 £ 0.002)
agm™ 23000 0.117 £ 0.002

foK™ 148000 0.117 £+ 0.001 (0.024 £ 0.001)

Table 8.4: Exclusive BT decay modes contributing to BB background, generated events

and reconstruction efficiencies. The values in parenthesis are the final efficiencies using
the BES lineshape for the fy — KTK™.

We report the efficiencies for these modes in Table 8.4. The scalar modes fyn* and
agm ™ are generated forcing the decay of f(a)g — KTK~. In order to estimate the contri-

bution of scalars mesons in the signal region we have to know the branching fractions of

BF(fo—KTK™)
BFfoomta) » DU

some of them are not consistent with other ones. For example, regarding the f, branch-

f(a)g — KT K~. Measurements exist that give the relative amount of

ing fractions, PDG gives a result for these ratios which come from a combined K-matrix
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analysis of Crystal Barrel, GAMS and BNL [29]
D(rm)/ [T(rm) + T(KK)] = 0.84 £ 0.02 (8.6)

Considering that the K belongs to an isospin doublet, we estimate that B(fy — KTK~) ~
0.08. This result is similar to the assumption used in the BABAR generic Monte Carlo
(Bye(fo — KTK™) = 0.11). The fy contribution which can be estimated from Monte
Carlo is so reported in Table 8.3 and is negligible with respect to the signal. With the
same assumption the estimated number of fo K in the final data sample is 25.7 events.
From our Dalitz plot analysis of B® — K+K~K°, we get an higher fraction of f5(980)
in the ¢(1020) mass region: the branching fractions are reported in Table 6.20. They agree
with the measurements of the Bt — K*K~ K™ Dalitz plot [76]. With these branching
fractions the expected yields of for™ and foK* change drastically. They are also reported
in Table 8.3. We will use this estimation for the validation studies.
Similar considerations can be made for the aq contribution, where from [21] we have
that:
[(KK)/T(nr) = 0.183 & 0.024 (8.7)

This leads to a BF ~ 0.075 and so the real contribution from aom™ seems to be negligible.

Because of these uncertainties on KK~ S-wave contamination in the ¢ region, we
include a generic S-wave component in the fit and we fit its yield. We will verify with toy
Monte Carlo experiments the capability of the fit of doing this and to estimate possible bi-
ases on their determination. Figure 8.11 (Figure 8.12) shows the my,;ss and mp (KTK~
mass and cos 6y ) distributions for signal Monte Carlo events and the three different “peak-
ing” B background components. The pollution coming from B°B° decays is negligible.
In the whole generic Monte Carlo sample we find only 1 event, (B® — ¢K2(7t77)). So

we do not further consider this component.
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Decay mode Fit Region Signal Region BF used (107%) [source]
om0 52 50 1 [MC]

Fort? 2.0 2. 1 [MC]

aom® 2.0 1.6 1 [MC]
K*(K*7)n° 1.2 0.8 15 [MC]
PKS(m070) 1.0 1.4 8.671% x 1/3 [PDG]
D K- 0.2 0 20 [MC]
D**p~ 0.2 0 46 [MC]
R 0.2 0 250 [MC]

pOr 0.2 0 22 [MC]
combinatorial 1.2 0

Total 8.2 5.2

Table 8.5: Expected events per 210 fb™' of B°B° generic decays. The ¢K and K*7°
yields have been normalized using the measured Bs. Branching fractions denoted with
[MC] are taken from the simulation, which usually is [21] or reasonable assumption from
theoretical estimations.

8.2.2 BB Background for B® — ¢=°

We repeated the study of the B background composition for the neutral mode. The FR
and SR are defined in the same way of the charged mode.

In Table 8.5 we show all the events which satisfy the selection on the whole generic
B°B° and B*B~ samples, scaled to the luminosity of 212 fb~*. Fig. 8.13 shows the
distribution of m,;ss and mp for these events. Of these modes, B® — ¢K° and B —
K*7° has a well established branching fraction: (B (B° — ¢K°) = 8.67% x 107% and B
(K*7%) = 1.74£0.8 x 1079 [21]), so for these modes the estimated contribution in Table 8.5
has been evaluated using the measured decay rates. The branching fractions for the scalar
mesons decaying in two kaons are not well known, as described in the previous section.
Like for the charged mode, we include an S-wave component in the fit and fit its yield.

All the other peaking modes in the Monte Carlo are produced with the B =1 x 1079,
and we have no measured upper limits, so we can only give a rough estimation of the
signal to background yield ratio. With this warning, we estimate that in the “narrower”
signal region the B background pollution to the signal is less than 10%.

The pollution from charged B decays is even smaller. We apply the selection on the
whole BT B~ Monte Carlo sample. The selected events are shown in table 8.6. When we
re-scale these events to actual data sample we have ~ 3.7 events in the FR, but they are

all purely combinatorial-like: in the whole BT B~ Monte Carlo dataset we find no events
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Decay mode fit region signal region
D%t 5 0
forOnt 1 0
Pt KT K~ 1 0
a’p™ 1 0
for™ 1 0
DTK? 1 0
D*0pt 1 0
combinatorial 7 0
Total 18 0

Table 8.6: Events selected in the whole BT B~ generic Monte Carlo sample, for an equiv-
alent luminosity of ~ 1020 fb~! (approximately five times the used data sample).

in the SR. So we will not include this component in the ML fit.

In Table 8.7 the reconstruction efficiencies of the most dangerous decay modes, eval-
uated with a large number of simulated events of these exclusive B° decays, are listed.
We find that the efficiency for K*7° is very small, the invariant mass cut rejecting 98%
of the events and the particle identification about 11% of the events. On the contrary,

¢K? events are reconstructed missing a 7°

coming from K? decay, and this produces

systematically small values of mp: in the fit region only 18% of the events are selected.
Fig. 8.14 shows the distributions of m,,;ss and mpg for signal Monte Carlo and the

different exclusive modes, while in Fig. 8.15 are the distribution of K™K~ invariant mass

and cosfy. Since the expected number of B background events, excluding the discussed
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Decay mode generated efficiency

for® 49000 0.074 £+ 0.001 (0.015 £ 0.001)
agm® 46000 0.076 4+ 0.001
K*(K*7)n° 58000 0.0007 £ 0.0001

PK o (m7) 165000 0.0032 £ 0.0001

Table 8.7: Exclusive B decay modes contributing to B background for BY — ¢n® mode,
generated events and reconstruction efficiencies. The value in parenthesis is the efficiency
when the BES lineshape is adopted for the fo — KTK~ [79].

Myniss mpg lg ‘ COS QH‘ Mg+§K—
Mimiss 1 0.61(-0.62)%  -0.64(3.96)%  -0.39(-1.78)%  0.25(-1.71)%
mp - 1 0.29(-0.78)%  -0.43(1.92)% 1.61(1.27)%
Iy - - 1 0.41(-1.17)%  -0.34(3.47)%
| cos 0| - - - 1 1.49(-1.80)%

Table 8.8: Linear correlation coefficients between Likelihood variables as computed on
the B — ¢n” Monte Carlo signal sample (data sideband with m,,;ss < 5.26 GeV/c?).

S-wave component, is small, we neglect this component in the nominal fit.

8.3 The Maximum Likelihood Fit

We extract the signal yields for B® — ¢n° and BT — ¢h™ with an unbinned maximum
likelihood fit (Eq. 6.13). For both decay modes, the likelihood function has Ny, = 3,
which are the signal, ¢g background and BB background, where for BB background
we consider the S-wave KK~ contribution in the ¢(1020) region (mainly f5(980)), as
discussed in the previous section. We simultaneously extract the event yield of each

component, but, in this quasi-two-body approach, we neglect interference effects.

8.3.1 Likelihood Function for B? — ¢n®°

Since correlation between the likelihood variables are negligible both in signal and back-
ground events (Table 8.8), we can factorize the PDF in the product of the PDF’s for each
variable:

P = P(mmiss) . P(mB) . P(lg) . P(’ COS HHD . P(mK+K—) (88)

We parameterize signal PDF’s using unbinned maximum likelihood fit on a signal Monte

Carlo sample. We use the Cruijff function (Eq. 6.15) to parameterize m,,;ss and mpg
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(Fig. 8.16a,b). We use a second order polynomial for |cosfy| and a relativistic Breit-
Wigner as the ¢(1020) lineshape (Fig. 8.17a,b). Since the distribution of [y interrupts
at 0.55 because of the selection, we use a step function, i.e. a parametric histogram, to
parameterize it. We use a not uniform binning of the step function, with an increased
granularity where the most of discrimination between signal and continuum background
is needed (Fig. 8.18).
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Figure 8.16: Signal PDF’s used in the B® — ¢n° likelihood for (a) myss and (b) mp.
Both parameterizations are obtained from a maximum likelihood fit to signal Monte Carlo
sample with a Cruijff function.
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Figure 8.17: Signal PDF’s used in the B® — ¢n° likelihood for (a) mg+g- and (b)
| cos Oy |. Parameterizations are obtained from a maximum likelihood fit to signal Monte
Carlo sample with a (a) relativistic Breit Wigner and (b) second order polynomial.
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Figure 8.18: Signal PDF used in the BY — ¢n° likelihood for I;. The parameterization is
obtained from a maximum likelihood fit to signal Monte Carlo sample with a parametric
step function.

The Mmypiss continuum background is parameterized with an ARGUS function (Eq. 5.11),
while a second order polynomial is used for mp (Fig. 8.19a,b). The ¢ lineshape is pa-
rameterized with a relativistic Breit Wigner, because of the presence of true ¢’s in the
continuum events, plus an exponential background (Fig. 8.20a), describing the non reso-
nant two-tracks combinations. In the fit we fix the mean value and the width of the Breit
Wigner to the values obtained from the fit on the signal Monte Carlo events, while we
float the fraction and the parameter of the exponential distribution. The | cos 8| distri-
bution is parameterized with a second order polynomial (Fig. 8.20b), The [y distribution
is parameterized with a step function with the same binning of the signal (Fig. 8.21).

As usual, we determine these parameters from a unbinned maximum likelihood fit to
the qg Monte Carlo sample, to find the best shapes for the PDF’s, but since we have
sufficient continuum events in the final data sample, we fit their parameters directly on
data.

The BB contributions (KK~ S-wave) can be distinguished from signal only by their
Dalitz plot variables mg+ - and cosfy. We parameterize variables on the merged sample
of exclusive B — f5(980)7° and B® — a((980)7° decays. We use the same PDF’s as
for signal for my,;ss, mp and ly. For my+x— we use a Flatté function (Eq. 3.40) with
parameters reported on Table 6.12. The PDF is displayed in Fig. 8.22a, where only the
tail of the function over the K K threshold is shown. We parameterize the | cos 0| with
a second order polynomial.

We summarize the parameterization of the PDF’s for B® — ¢7° in Table 8.9.
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Figure 8.19: ¢g background PDF’s used in the B® — ¢n¥ likelihood for (a) m,,;s and
(b) mp. Parameterizations are obtained from a maximum likelihood fit to the gg Monte
Carlo with (a) ARGUS function and (b) 2-nd order polynomial.
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Figure 8.20: ¢g background PDF’s used in the B® — ¢7° likelihood for (a) my+ - and
(b) | cos Oy |. Parameterizations are obtained from a maximum likelihood fit to ¢g Monte
Carlo sample with a (a) relativistic Breit Wigner plus exponential and (b) second order
polynomial.
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Figure 8.21: ¢g background PDF used in the BY — ¢ likelihood for l5. The param-
eterization is obtained from a maximum likelihood fit to ¢qg Monte Carlo sample with a
parametric step function.
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Figure 8.22: BB background PDF’s used in the B® — ¢7¥ likelihood for (a) mg+ - and
(b) | cos 0y |. Parameterizations are obtained from a maximum likelihood fit to ¢g Monte
Carlo sample with a (a) Flatté function and (b) second order polynomial. For the final
fit the parameters of the Flatté function are taken from BES data and not from Monte
Carlo, as they are in this figure.
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Signal BB bkg qq bkg
Momiss Cruijff Cruijff Argus
mp Cruijft Cruijft 2-nd order polynomial
lo Step Function Step Function Step Function
|cosOy| 2-nd order polynomial 2-nd order polynomial  2-nd order polynomial
MK+ K- rel. BW Flatté rel. BW + exponential

Table 8.9: Summary of PDF shapes used in the maximum Likelihood parameterization
for B® — ¢n%. rel. BW stands for relativistic Breit Wigner function.

8.3.2 Likelihood Function for Bt — ¢h™

The likelihood function for B* — ¢h™ decays is very similar to the one for B® — ¢n°.
The main difference is that all the PDF’s are duplicated for the two mass hypotheses
h =7, K. Then Ngp.. = 6. We also add the PDF’s for 0. to discriminate the track mass
hypotheses.

Also for this mode we find negligible correlation between likelihood variables (Ta-

ble 8.10), so we can factorize the likelihood in the product of the different PDF’s:

P = P(Mumiss) - P(mp) - P(lz) - P(| cos by |) - P(mg+x-) - P(f.pull) (8.9)

Moniss mpg Iy | cos 0| M+ - 6. pull
Mimiss 1 1.42(0.80)% 0.52(1.97)% 0.15(-1.35)% -0.17(-0.93)%  0.34(-0.12)%
mp ; 1 0.10(-0.37)% 1.46(0.56)%  3.19(1.56)%  0.45(0.53)%
Iy ; ; 1 0.24(-1.48)%  0.15(0.80)%  1.02(-0.78)%
| cos 0| - - - 1 -0.42(-1.26)%  1.21(-0.98)%
Mg+ K- - - - - 1 -0.12 (—056)%

Table 8.10: Correlation coefficients between Likelihood variables as computed on the B —
¢m Monte Carlo signal sample (on-resonance sideband data with m,,;ss < 5.26 GeV/c?).

We parameterize the PDF’s with the same functions used in the case of the neutral
decay. They are the forced to be the same for BT — ¢n™ and BT — ¢K ™, except for the
0. pulls and mp.

For 6. pulls we use the double Gaussians PDF’s evaluated on data control samples
shown in Fig. 8.9. For mp we use a Cruijff function parameterized on signal Monte Carlo
events of Bt — ¢nt. The equivalent PDF for the K mass hypothesis is evaluated from
this one by means of the event-by-event shift of Eq. 8.5, which depends by the momentum
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of the track. Resulting parameterizations are shown in Fig. 8.23. The

used for BB background mp (between f5(980)7* and fo(980)K™).
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Figure 8.23: Signal PDF’s used for mp parameterization of (a) Bt — ¢ and (b) BT —
¢K™T events. The parameterization is obtained with a Cruijff function for BT — ¢t and
the one for BT — ¢K ™ is obtained with a momentum scaling of the one for the m mass

hypothesis.

We summarize the parameterization of the PDF’s entering the likelihood function in

Table 8.11.
Signal BB bkg qq bkg
Moniss Gaussian Gaussian Argus
mpg Cruijft Cruijft 2-nd order polynomial
Iy Step Function Step Function Step Function
|cosOy|  2-nd order polynomial 2-nd order polynomial  2-nd order polynomial
M+ K- rel. BW Flatté rel. BW + exponential

f. pulls mom. dep. Gaussians mom. dep. Gaussians  mom. dep. Gaussians

Table 8.11: Summary of PDF shapes used in the likelihood parameterization for B* —

¢h™*. rel BW stands for relativistic Breit Wigner function.

8.3.3 Data - Monte Carlo Comparison for B™ — ¢h™

While for B® — ¢n® accurate studies on neutral particles using data control samples in

BABAR provide corrections to apply to simulated events to achieve the best data/Monte

Carlo agreement, for Bt — ¢h™ decays with three tracks in the final state we need a

specific control sample. In order to do this we reconstruct BT — J/¢ K™ events both on
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Moniss J/Y KT data J/pK* Monte Carlo ¢nt Monte Carlo ¢K™T data

m 5.28030 £+ 0.00006  5.27870 £ 0.00005  5.27930 £ 0.00008 5.28010 £ 0.00037
o 0.00523 £+ 0.00008  0.00530 £+ 0.00004  0.00529 =+ 0.00006 0.00583 £ 0.00029

Table 8.12: Comparison of m,,;ss parameterizations from signal Monte Carlo samples and
data. Signal parameterization is obtained with a Gaussian.

Monte Carlo and data. This sample provides a large statistics sample with high purity
with can be used to validate the kinematic variables m,,;ss and mp.

We parameterize the distributions assuming the same functional forms as for BT —
¢h™t signal. We determine the associated parameters through a maximum likelihood fit.
In the case of data, we also add a background component to be fitted simultaneously to
signal events. In this case, we assume an ARGUS shape for m,,;ss and a second order
polynomial for mp.

The my;ss distributions on BT — J/i KT signal Monte Carlo and data are shown in
Fig. 8.24. The distributions differ for a larger value of the width on Monte Carlo and a

small shift in the mean. This is summarized in Table 8.12.
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Figure 8.24: Distribution of m,;ss, as obtained from a sample of (a) signal BT — J/¢ K™
Monte Carlo or (b) on-resonance data. The superimposed curve is obtained fitting the
sample with (a) a single Gaussian or (b) a single Gaussian plus ARGUS function which
parameterizes the background.

Also for mp we find a good agreement between data and Monte Carlo (Fig. 8.26).
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In order to have a qualitative estimation of the agreement between data and Monte
Carlo (in J/¢Y K™ events) we compare the Monte Carlo events with data after a back-
ground subtraction is applied (Fig. 8.25). From the distribution is evident the very good

agreement on Mm,,;ss and mp distribution.
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Figure 8.25: Distribution for (a) my,ss and (b) mp for BT — J/¢ K+ Monte Carlo events
(histogram) and reconstructed events on Runl-IV data after a background subtraction
(dots). The distribution are normalized to the same area.

The conclusion of this study is that the Monte Carlo reproduces quite well the shape of
the kinematic variables, even if a small correction is needed to achieve the best agreement
with data. In the case of our signal, since we expect more than 300 signal BT — ¢K*
events, we can fit the m,,;ss and mp signal parameters directly on data (my,;ss PDF’s
for K and 7 hypotheses are the same, and mpg PDF’s are correlated between them by
the event-by-event shift of Eq. 8.5). This strategy avoids to add a undesirable systematic
uncertainty due to m,,;ss and mpg parameterization, and it is also better than taking the
shape from BT — J/) (u"p~) KT events. In fact radiative emission by leptons produces a

small tail in mp shape which is not present in BT — K™K~ h™ events (see Table 8.13).

8.4 Validation Studies

We validate the fit procedure with a number of pure toy Monte Carlo and with embedded
toys. We report here only the results of embedded toys, because they give the additional
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Figure 8.26: Distribution of mp, as obtained from (a) a sample of signal Bt — J/¢ K™
Monte Carlo or (b) data. The superimposed curve is obtained fitting the sample with (a)
a single Gaussian or (b) a single Gaussian plus a second order polynomial parameterizing
the background.

Mmiss  J/PKT data  J/Y KT Monte Carlo ¢n™ Monte Carlo oKt data
m 5.2776 £+ 0.0009 5.2795 £ 0.0006 5.2818 + 0.0008  5.2253 £ 0.0038
ol 0.0171 £ 0.0007 0.0163 £ 0.0005 0.0222 £+ 0.0006  0.0181 + 0.0040
OR 0.0158 £+ 0.0007 0.0146 + 0.0005 0.0162 £+ 0.0006  0.0259 4+ 0.0040
o, 0.1472 £+ 0.0086 0.1149 + 0.0049 0.0999 + 0.0061 0.1752 4+ 0.0813
R 0.1202 £ 0.0096 0.1423 £ 0.0051 0.1381 £ 0.0072  0.1182 + 0.0486

Table 8.13: Comparison of mp parameterizations from signal Monte Carlo samples and
data. Signal parameterization is obtained with a Cruijff function (Eq. 6.15).
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information on the effect of the neglected correlations in the fit. Since only upper limits

exist on the branching fraction of B — ¢, we use in generation a small number of events

for the nominal toys (N = 5), and we also perform a scan in the range N € [0 < 10].
For B — ¢K, whose branching fraction is well established, we use the actual world

average [22].

8.4.1 Validation Studies for B® — ¢n°

We perform toy Monte Carlo experiments embedding Ny, = 5 events from selected Monte
Carlo events and N5 = 3, and generating according PDF’s Nz = 2700 continuum events.
We show the pulls on the three fitted yields and the expected uncertainties on them in

Fig. 8.27.
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Figure 8.27: Embedded toy Monte Carlo experiments results for B® — ¢n°. Pulls (top)
and uncertainties on yields (bottom) for (a) signal, (b) BB background and (c¢) ¢g back-
ground.

The pulls for signal and BB background do not follow Gaussian distributions with

mean zero and unitary standard deviation. This behaviour cannot be attributed to an
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effective bias in the fit procedure, but to the fact that we are generating 5 and 3 events
for signal and BB components, respectively. Then these components follow a Poisson
distribution, producing the long tail in the pull, with a consequent shift of the mean to
lower values. The ¢q background, for which thousand of events are generated, shows a
distribution of the pull which is perfectly compatible with a Gaussian regime.

In order to study in detail this effect we perform a toy Monte Carlo scan of the signal
and BB yields. We then generate experiments varying the number of generated events in
the range N € [0 + 10]. In Fig. 8.28 we show the distribution of the fitted yield vs. the
generated value, X7 vs. X™¢ where X = Ny, Nyg. For both components, the size of
the bias depends on the true value of the yield and tends to be negligible as the number
of generated events increase. When the true yield is 2 6, the Gaussian assumption begins

to be valid, the maximum of the likelihood becoming a good estimator of the true value.
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Figure 8.28: Distribution of fitted (maximum of the likelihood) vs. generated values for
(a) Ny, and (b) Nz when ~ 50 10° toy experiments for B — ¢n° are generated with
Nsig and Ngp uniformly distributed in the range [0 = 10]. The red line represents the
relation X/ = X'u¢ where X = Ng,, Nyz. The black lines represent three linear fits
to the distribution in three different sub-ranges.

We then have to define a procedure to interpret the results if a signal yield in the

problematic range [0 =+ 6] is returned by the fit:

e setting an Upper Limit: to set an eventual upper limit we decide to use a

Bayesian approach where the likelihood function is integrated defining a 90% prob-
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ability interval. In this case, the maximum of the likelihood is not used then the

“fit bias” is not a problem;

e quoting a Central Value: in this case, the maximum of the likelihood is not
an unbiased estimator of the true value of the yield. We find that the median of
the likelihood, defined as the value lying at the midpoint of the likelihood function,
such that there is an equal probability of falling above or below it, is a less biased

estimator of the true yield. This is shown in Fig. 8.29. Even if the median of the
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Figure 8.29: Distribution of fitted (median of the likelihood) vs. generated values for (a)
Nig and (b) Ngg when ~ 10 10? toy experiments for B® — ¢7¥ are generated with Niig
and Ng5 uniformly distributed in the range [0 + 10]. The red line represents the relation
XJit = X'rue where X = Ny,, Ngg. The black line represents a fit with a third order
polynomial to the distribution.

likelihood is a less biased estimator, still some deviation from the true value can be
seen. We parameterize the distribution in Fig. 8.29 with a third order polynomial f5
which we can use as correction function X = f3(X /%) once we have the unblinded

value X/,

8.4.2 Validation Studies for BT — ¢ht

We validate the fit to Bt — ¢h™ with embedded toy Monte Carlo experiments. We use
as generation yields Nyr =5, N+ = 350, Npp(+) = 3 and Nppg+) = 46. We generate

separately ¢g backgrounds for ¢ and ¢ K™ species, estimating the relative fractions
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from a fit to sideband data. According to these fractions we use Ngg+) = 6500 and
Nggx+y = 4500.

We generate according to the PDF’s the ¢g events, while we embed both signal and BB
events from full Monte Carlo samples. Together with accounting for correlation among
the different likelihood variables, the full Monte Carlo is particularly necessary for this fit

involving 6. because it fully reproduces two important features of the data:

1. the track momentum/polar angle dependence induced by the boost, because it is

essential to model the DIRC resolution sensitivity to cos#;

2. the correlations between the h™ track and the recoiling ¢ in the decay, because the

separation between kaon and pion depends on the track momentum.

The pulls for the fitted yields of signal and BB background are shown in Fig. 8.30,
while the pulls for the ¢q background are shown in Fig. 8.31.
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Figure 8.30: Embedded toy Monte Carlo experiments results for BT — ¢h™. Pulls (top)
and uncertainties on yields (bottom) for (a) signal B¥ — ¢n™, (b) signal BT — ¢K™,
(¢) BT — ¢n™ BB background (d) Bt — ¢ K™ BB background.

The same features due to the limited statistics in generation are visible on the signal
and BB background for B¥ — ¢nt component. The yields of signal and BB background
for BT — ¢K T show no presence of bias, like for the ¢g background yields.
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Figure 8.31: Embedded toy Monte Carlo experiments results for Bt — ¢ht. Pulls
(top) and uncertainties on yields (bottom) for (a) ¢g background for BT — ¢nt, (b) qq
background for Bt — ¢ K™+

We repeat the scan of the yields in the range [0 + 10] in order to study the “fit bias”
as a function of the generated number of events. We obtain the curve of the median of
the likelihood versus the generated number of the events which we will use to correct the

central value of the branching fraction. The curves are reported in Fig. 8.32.

8.5 Fit Results and Branching Fraction Measurement

The selection retains a sample of 2732 ¢m¥ candidates and 10990 ¢h™ candidates. Ap-
plying the maximum likelihood fit to these two samples we do not observe evidence of
these decays. Table 8.14 reports the results for the BY — ¢n° yields, while in Table 8.15
we report the results for the Bt — ¢h™ yields. The reported yields correspond to the
maximum of the likelihood.

In Fig. 8.33 we show the distributions of the likelihood variables for B® — ¢7° can-
didates, with the result of the fit superimposed, after a requirement on the signal-to-
background likelihood ratio has been applied to enhance the signal.

In Fig. 8.34 we show similarly likelihood-enhanced plots for the Bt — ¢h™ candidates.
The requirement on the likelihood ratio considers both BT — ¢xt and BT — ¢K™*

as signal: (Lyr+ + Lyx+)/ (Liot), Where Ly is the sum of the likelihoods for all the
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Figure 8.32: Distribution of fitted (median of the likelihood) vs. generated values for (a)
Ny and (b) Npg when ~ 10 10° toy experiments for BT — ¢ are generated with Ny,
and N5 uniformly distributed in the range [0 + 10]. The red line represents the relation
X/Jit = Xtrve where X = Ny, Npg. The black line represents a fit with a third order
polynomial to the distribution.

Yield Fitted Value Glb. Correlation

Ng 3.47597 0.21
Ng5 —1.32%533 0.52
Ny 2732723 0.15

Table 8.14: Fitted yields on the on-resonance data sample (232 M of BB pairs) for
signal (Ng), BB background (Ngz) and continuum background (N,z). These numbers
correspond to the maximum of the likelihood.

components. For clearness, we display also the plots where we enhance only the BT —
¢t component in Fig. 8.35, for the m,,;,s and mp variables.

The fitted yield for BT — ¢K™ is consistent with the measured branching fraction
measured with the Dalitz plot analysis of Bt — K™K~ K™ [76], performed on the same
dataset (the number of expected events is 346 using the world average branching ratio).
Also, the number of event fitted for the BB background, which with good approximation
is made only by fo(980)K™, is consistent with the P-wave/S-wave ratio, in the narrow
KT K~ mass region considered in this analysis, of our measurement in B° — K+*K~K°

Dalitz plot (see Table 6.20).
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Figure 8.33: Distribution of m,,ss (top left), mp (top right) Iy (middle left), |cosfy|
(middle right), m+x- (bottom) for B — ¢n® candidates on on-resonance data, together
with the result of the maximum likelihood fit after applying a requirement on the ratio
of signal likelihood to signal-plus-background likelihood (computed without the displayed
variable). The curves are projections from the likelihood fit for total yield (continuum line)
and for the continuum background (dashed line). The efficiencies on signal (continuum
background) [s-wave background] of the likelihood-ratio cut are: 66% (9%) [17%] for
Mimiss, 91% (6%) [38%)] for mp, T0% (3%) [16%)] for l2, 81% (5%) [36%] for | cos Oy|, 76%
(3%) [40%)] for my+x-. We didn’t display the BB component for clearness of the plot.
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Figure 8.34: Distribution of m,,ss (top left), mp (top right) Iy (middle left), |cosfy|
(middle right), mg+x- (bottom) for B — ¢h™ candidates on on-resonance data, together
with the result of the maximum likelihood fit after applying a requirement on the ratio
of signal (¢h™) likelihood to signal(¢h™)-plus-background likelihood (computed without
the displayed variable). The curves are projections from the likelihood fit for total yield
(continuum line), for the continuum background (fine dashed line) and for continuum plus
BB component (dashed line). The red dashed line represents the ¢m* component. The
efficiencies on signal (continuum background) [s-wave background] of the likelihood-ratio
cut are (each one is the sum of ¢t and ¢KT): 63% (5%) [13%)] for muss, 79% (4%)
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Yield Fitted Value Glb. Correlation
Ng(¢mt) —2.887¢0 0.37
Npg(nt) 2.77+143 0.36
Nyg(nt) 6254757 0.11
Ns(pK™) 312.2%339 0.37
Nps(K) 417437 0.36
Ng(K*) 4386 4 70 0.11

Table 8.15: Fitted yields on the on-resonance data sample (232 M BB pairs) for
signal (Ng(¢nt, K1)), BB background (Ngs_ymen ™, KT) and continuum background
(Ngmt, KT). These numbers correspond to the maximum of the likelihood.
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Figure 8.35: Distribution of my,ss (left), mp (right) for Bt — ¢nt-only candidates on
on-resonance data, together with the result of the maximum likelihood fit after applying
a requirement on the ratio of signal (¢7n™) likelihood to signal(¢n™)-plus-background
likelihood (computed without the displayed variable). The curves are projections from
the likelihood fit for total yield (continuum line), for the continuum background (fine
dashed line) and for continuum plus BB component (dashed line).

8.5.1 Upper Limits on Branching Fractions

Since we do not observe any signal in both neutral and charged B — ¢m decay, we set
upper limits on the branching fractions.

We adopt a Bayesian approach to do it. From the multi-dimensional likelihood defined
by Eq. 8.8 or Eq. 8.9 we obtain a modified likelihood function L(Ng):

L(NS) = NO/ dNS—waveE(NSy NS—wave)a (810)
0

where the normalization Ny is such that fooo dNgL(Ng) = 1. The two dimensional like-
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lihood L£(Ng, Ns_wave) is given at each point on the Ng-Ns_yave plane by the function
defined in Eq. 6.13, maximized with respect to all of the other fit variables. For calculat-
ing upper limits, we impose the a priori constraints Ng > 0 and Ng_yave > 0. We show

the experimental likelihood on Ng for both neutral and charged mode in Fig. 8.36
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Figure 8.36: Experimental likelihood for the signal yields for (a) B® — ¢n° decays (b)
BT — ¢t decays. The darker region is the 68% probability interval, the other is 90%
interval. Ng > 0 a priori assumption has been assumed.

The branching fraction B is calculated from the observed number of signal events as

Ng

5= e Npp - Bo— KK~

(8.11)

where Npjz is the number of BB pairs produced (232 x10°) and ¢ is the reconstruction
efficiency for the B candidates. In Eq. 8.11 we assume equal branching fractions for 7°(4.5)
decays to charged and neutral B-meson pairs [23].

Under the assumption that Nzz and ¢ are distributed as Gaussians, we obtain a
likelihood function, Lg, for the branching fraction, B, based on Eq. 8.11, by convolving
the likelihood (L in Eq. 8.10) with the distributions of Npz and e. We also include the
additional uncertainty coming from the systematic error on the signal yield (which we
will discuss in Sec. 8.6). The resulting likelihood is shown in Fig. 8.37 for each of the two
decay modes. In the plots, the upper boundary of the dark region represents the 90%
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Figure 8.37: Likelihood distribution, Lz(B), for (a) B(BT — ¢7*) and (b) B(B° — ¢n°)
in arbitrary units. The upper boundary of the dark region represents the 90% probability
upper limit.

probability Bayesian upper limit By, defined as:

BuL +oo
/ L(B)B = - / Lu(B)dB (8.12)

We determine

B(BT — ¢1") < 24x1077,
B(B® — ¢7°) < 28 x 107"

These limits are consistent with Standard Model predictions [86].

Central Value of Branching Fraction

Even if the result of this measurement is given by given upper limits on B, or, better, by
the experimental likelihoods in Fig. 8.37, we also compute a central value for B in order
to allow world averaging with other experiments which provide only it.

Since the fitted yields lie in the problematic region where the maximum of the likeli-

hood is not a good estimator of the true value (Fig. 8.28), we do not use the yields reported
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in Tables 8.14 and 8.15, but instead the median of the likelihood for Ng (Eq. 8.10 and
Fig. 8.36). We correct for the residual bias which affects this estimator, using as calibra-
tion curve the third order polynomial shown in Fig. 8.29a and Fig. 8.32a for B® — ¢7n® and
BT — ¢nT, respectively. With this method we find the yields reported in Table 8.16. We
then evaluate the values for branching fractions with Eq. 8.11 without assuming a prior:

that Ng > 0 as for the upper limit evaluation. The results are reported in Table 8.16.

Bt — ¢rt B® = ¢

Yield —15+59 10+£35
(%) 371401  295+0.8
B(107%) —0.0440.17  0.12+0.13
UL(B)(10-7) 2.4 2.8

Table 8.16: Signal yield (evaluated as the median of the likelihood), detection efficiency
¢ (the uncertainty includes both statistical and systematic effects), measured branching
fraction B with statistical error, after the correction for the fit bias has been applied, for
the two decay modes considered and upper limit at 90% probability.

8.6 Systematic Uncertainties

Sources of systematic uncertainties on the measurement of the branching fraction are
the quasi-two-body approach which neglects interference effects, the error associated to
the counting of produced BB couples in our data set, the knowledge of reconstruction
efficiency, estimated from signal Monte Carlo and the performances of the particle iden-
tification, the knowledge of the shape parameters of the variables used in the fit and the
fit biases.

The Quasi-two-body Approximation: Interference Effects

The quasi-two-body approximation consists of reducing the kinematically allowed region
in the Dalitz plot to a band which is dominated by a single resonance. In the case of the
¢ this assumption is justified by the small width of the resonance, which allow to take
a small portion of the Dalitz region where contribution from the scalar meson f,(980) is
highly reduced.

The total K K*m amplitude can be written as the coherent sum of the amplitudes of

the single resonances, weighted by the form factors F; which depend from the Dalitz plot



8.6 Systematic Uncertainties 311

position and the spin of the resonance:
Agi-n =" KFprApgr + KFyrAgr +° KFnrANR (8.13)
where /K are the kinematic factors:

'K = 1, (8.14)

IK = —4|ﬁK+||ﬁﬂ| COS 9K+A7r = SK+7x — SK—=x

where 0+ is what we called the helicity angle and s;; is the invariant mass squared of the
particles ¢ and j and the three momenta |p;| are given in the rest frame of the resonance.
The form factors F; are represented in the Dalitz plot by Breit Wigner (Eq. 3.27) or Flatté
(Eq. 7?) functions.

In the rest of discussion we will assume that the Af . amplitude is real and that
the relative phase between Ay, and Ay, is ¢. Since we want to evaluate the system-
atic uncertainty to the yield of B — ¢m, we have also to make an assumption on the
ratio |Afx|/|Asx|: we take it equal to the measured ratio |Ag x+|/|Apx+|. With these

assumptions the total rate is given by:

2

A
A+ KR+

As s
Arcrsial? = [Anl? | | Fronl? [Apprc:|

Aurcr] FinFyr "Kcosg| (8.15)

Allowing the interference between P-wave and S-wave, and using the measured ratio
of |Apx+|?/|Asx+|? [76], we obtain the mass and helicity angle distributions shown in
Fig. 8.38. We used three different relative phases between S- and P-wave: ¢ = {0, 7/2, 7},
but the final lineshape doesn’t depend very much by this phase. We assume the non
resonant (NR) component contribution measured by Belle collaboration in the Dalitz

analysis of BT — KT K~ K*[75]:
B=(24.0+£15+£18"2) x107° (8.16)

where the first quoted error is statistical, the second is systematic and the third is the
model error. We parameterize this component with a flat PDF in mg+ - multiplied by

the phase space and a flat PDF in the helicity. We also assume the measured phase:
NR phase(®) = —68 £ 2. (8.17)

We run a lot of toy Monte Carlo experiments generating with the interference on and

fitting with the nominal fit, where it is neglected. We define the systematic uncertainty on
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Figure 8.38: Generated distribution of (a) mg+r- and (b) |cosfy| for 31980 Bt —
¢K™ events, 4800 BT — foK* events, once allowing the interference between the two

amplitudes with different relative phases (¢ = {0,7/2,7}) and once not allowing the
interference (blue histogram).

the yield as the difference between the fitted ¢7 yield and the generated one, divided by

Nyt (nominal)—Ngen (inter ference on

Nyon(imier ference on) ) We find the effect of neglecting the
residual interference to be 4.4% on the ¢ yield and 1.1% on ¢ K yield. The distributions

the generated yield:

of the residuals for ¢pn* and ¢ KT are shown in Figure 8.39, the effect on ¢ is the same

of the one for ¢mt.

B Counting

The B-counting method described in [23] is used to determine the number of 7°(45) in the
on-resonance data. We assume equal branching fractions for 7'(4S) decays to charged and

neutral B-meson pairs. The uncertainty quoted for Runl-IV dataset we use (equivalent

to 231.8 x 105 BB pairs) is 1.30 x 105.

Reconstruction of 7°

The signal efficiency correction for BY — ¢n¥ due to discrepancies between Monte Carlo
and data is evaluated with neutral particles data control samples. The final correction to

the efficiency is 0.991 £+ 0.03 (syst) (see Sec. 8.1.1).

Tracking Efficiency

Using data control samples of charged tracks a flat systematic error of 0.8% per track is

assigned.
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Figure 8.39: Residuals for (a) ¢nt and (b) ¢ KT (right) yield when in generation the
interference between S, P wave and non resonant is allowed.

Particle Identification

Applying the standard PID selectors to Monte Carlo tracks, doesn’t fully reproduce the
PID efficiencies and purities on data. The efficiencies related to PID cuts in Monte Carlo
by using PID selectors are corrected using studies with very pure 7% and K* data control
samples from D** decays (see Sec. 8.1.2).

PID corrections contain efficiencies and errors on efficiencies, measured for each com-
bination of selector and true particle type in bins of momentum (p, # and ¢) in the
laboratory frame. PID corrections are generated for both data and Monte Carlo using
a number of control samples, so efficiency ratios of data to Monte Carlo using the same
momentum binning can be derived from them in a PID ratio table along with the corre-
sponding statistical errors. For each signal track that is required to pass a PID criterion,
a correction factor is read off from the ratio table. The true track identity (obtained from
Monte Carlo truth-matching) and charge tell us which correction is to be used for that
track.

The correction factor for an event is the product of corrections of individual tracks
that pass certain PID criteria in that event. The overall error is statistically calculated
and assigned as the systematic error on signal efficiency due to PID. We find a correction

of 0.5% both for charged and neutral mode, since we apply the same selection on kaons
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originating from ¢(1020).

Sub Branching Fractions

The uncertainty on the branching fraction B(¢p — K+ K ™) also contribute as systematic
error in the determination of the absolute value of the branching fraction of B — ¢n

decays. We use the PDG 2004 value: B(¢ — KTK~) = 0.491 + 0.006.

PDF’s Parameterization of B® — ¢=n°

We evaluate the uncertainty due to the knowledge of parameters entering the likelihood
moving each parameter by 10, where o is the error associated to each parameter. For
mp, whose shape is sensible to the calorimeter energy scale and resolution, we use as
control sample BT — h*™7¥, taking the shape from the fit on the Run I-IV dataset (the
same dataset we are using). Since in this measurement the usual AE variable is used
instead of mp, and the parameterization is done with another functional form, a Crystal
Ball shape (Eq. 5.10), we cannot simply use those parameters.

Then we generated about 50 x 10® toy Monte Carlo events with AE shape fitted on
h*r® data, and then we compare that shape with Amp = mp — m5P¢. Figure 8.40
shows that there is not significant difference between our corrected MC and data. We
then fit this mp distribution for h*t7% with a Crujiff function, and use these parameters
in the nominal fit. In order to evaluate the systematics, we vary the parameters by +10o,
where ¢ is the standard deviation obtained on a fit on a sample rescaled to the actual
luminosity, and taking the difference in the yield as the systematic error. For the ¢ mass
and | cosfy| we vary Monte Carlo parameters by 1o.

The I, variable has been used for the first time by B® — K97 analysis. In that analysis
the agreement between data and Monte Carlo has been checked using data control samples.
Since we are using the same selection on it (I < 0.55) and the same parameterization,
and since the shape of this variable does not depend by the reconstructed signal, but only
by the rest of the event, we can assign the same systematic uncertainty estimated by their
analysis (1.8%).

We consider here only the parameters associated to the signal component, since the

background parameters are floated in the nominal fit!.

Lwith the exception of myiss ARGUS endpoint. The position of the ARGUS endpoint is related to
the beam energies, and it is 100% correlated with the m,;ss mean for the signal, then this systematic
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In Table 8.17 we summarize the systematic uncertainties on the yield of B® — ¢,

The total uncertainty is obtained summing up in quadrature all the contributions.

Syst. contribution A N*(¢n°) A N~ (¢n%) A NT(for®) A N (for)

Sig. Mimiss 0.401 0.382 2.899 3.081

Sig. mp 0.400 0.377 2.845 3.127

Sig. I 0.374 0.475 3.36 3.229

Sig. $(1020) lineshape 0.260 0.241 1.880 1.912
Sig. | cos Oy 0.241 0.242 1.888 1.888
f,(980) modeling 0.675 0.403 2.881 3.803
Tot. 0.891 1.029 6.06 6.69

Table 8.17: Summary of BY — ¢7¥ systematic uncertainties related to the PDF parame-
terization.

PDF’s Parameterization of BT — ¢nt

As for the neutral channel, the main source of contribution to the systematic error comes
from the uncertainty on the parameters of the likelihood. In this case the control sample
is Bt — ¢ K™ itself, which has sufficient statistics to allow some PDF’s to be determined
on data. In the final fit we float the shape parameters of the two kinematic variables,

Mmiss and mp, and the mass of the ¢, so they will not contribute to the total systematic

uncertainty is already taken into account.



316 Measurement of Decay Rate of BY* — ¢r%* Decays

uncertainty. In this case we evaluate systematic error for the four yields we are floating:
BT — ¢, Bt — ¢K*, BT — for™, BT — fyKT. Also in this case the background
parameters, with the exception of ARGUS endpoint are floated in the fit and do not

contribute to the systematic error. The total contribution is summarized in Table 8.18

Syst. contribution A N;;+ A N+ A N;KJF A Nyger A N;g7r+ A Nyt A N;gKJr A Npg+
Sig. Iy 0.360 0.350 0.550 1.177 0.506 0.508 1.153  1.323
Sig. | cosOy] 0.193 0.201 0.353 0.683 0.284  0.291 0.892 0.614
Sig. 0. 0.389 0.413 1.011 0.958 0.570 0.580  1.434  1.426
f0(980) modeling 0.479 0.263 2.958 2.422  0.894  0.509 3.961 1.452
Tot. 0.693 1.264 3.225 2988 1.216 0.999 4.461 2.513

Table 8.18: Summary of BT — ¢h™ systematic uncertainties due to the PDF parameter-
ization.

Fit Bias

Only in the central value of the branching fraction, we include a systematic uncertainty
due to the fit bias. We decide to assign 1/2 of the deviation of the median from the
expected value, as determined by the relation shown in Fig. 8.29 for B® — ¢7° and in

Fig. 8.32 for Bt — ¢nt.

Summary of Systematic Uncertainties

In Table 8.19 we give the summary of the systematic uncertainties on the branching

fraction for Bt — ¢n ™ and for B® — ¢n'.



8.6 Systematic Uncertainties 317

Table 8.19: Summary of systematic uncertainties contributing to the total error for the
upper limit on the branching fraction. They are given in units of 1078,

B+—>¢7T+ BO—>¢7TO

PDF Uncertainty e 130
PID Efficiency 0.1 0.1
Tracking Efficiency 0.1 0.2
7V Efficiency - 0.1
LQZLO Cut 0.1 0.3
BB Pair Counting 0.1 0.2
Interference Effects 0.3 0.6
B(¢p — KTK™), B(m® — ) 0.1 0.1

1+2.8 3.7
Total 736 a3
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Chapter 9

Interpretation of the Results and
Constraints on New Physics
Parameters

CP violation in the By decays has been well established through the measurements of
time-dependent asymmetries in the B — [c¢] K° decays at the B-factories [89, 90]. The
world average of the “sine term” in the CP asymmetry of Eq. 1.55 is Sj.gxo = sin2f3 =
0.674 £ 0.026, in good agreement with the Standard Model (SM) prediction.

In the limit of one dominant decay amplitude, the C'P violating asymmetries measured
in the time dependent decays of neutral B mesons to C'P eigenstates depend only on the
sum of the phase of the B® — B® mixing amplitude and the phase of the decay amplitude.
The only two large phases in the CKM matrix belong to the elements V,,;, (7) and Vi4 (5).
In principle, one can determine (3 and 7 from the available data on K and B decays.
However, given the large theoretical uncertainties in the input parameters (e.g. By, fg)
the size of these phases remains uncertain [91, 92]. Based on these fact the Standard
Model predicts that the C'P asymmetries in all B; decays that do not involve direct
b — u (or b — d) transitions have to be the same.

In Sec. 1.4.1 we have described the decay amplitudes of B — ¢K° and the one of
B to three kaons, and we have shown that the expected deviation of the time-dependent
CP asymmetry in the Standard Model, due to suppressed b — u tree amplitudes, are
negligible for B — ¢K? and B® — KYK?K?, while can be larger in B — KTK~K°
(excluding ¢ K?).

Then, a measurement of the time-dependent CP asymmetry in these decay modes

Sy # sin 23 would be a signature of new physics.



320 Interpretation of the Results and Constraints on New Physics Parameters

New physics could in principle contribute to both the B°-B° mixing and to the decay
amplitudes. It is plausible that the new contributions to the mixing could be of the same
size as the Standard Model contribution since it is already a one-loop effect. This is why
most of the existing studies on the effects of new physics on C'P violating B meson decays
have concentrated on effects in the B°-B° mixing, and assume the decay amplitudes are
those in the Standard Model [93, 94, 95]. The distinguishing feature of new physics
in mixing is that its effect is universal, i.e. although it changes the magnitude of the
asymmetries it does not change the patterns predicted by the Standard Model. Thus, the
best way to search for these effects would be to compare the observed C'P asymmetry in
a particular b — s decay mode with the asymmetry predicted in the Standard Model.

In contrast, the effects of new physics in decay amplitudes are manifestly non-universal,
i.e. they depend on the specific process and decay channel under consideration. Experi-
ments on different decay modes that would measure the same C'P violating quantity in
the absence of new contributions to decay amplitudes, in this scenario measure different

C'P violating quantities.

9.1 New Physics Signatures with Supersymmetry

Supersymmetry (SUSY) is an extension of the Standard Model that was introduced to
cancel out the quantum corrections from virtual particles coupled with the Higgs field
which make the Higgs mass running up to the Plank scale. This is achieved in SUSY
introducing a bosonic partner of the standard fermions and vice versa, with the condi-
tion that these new particles have the same properties under the Standard Model gauge
transformations.

In looking for new physics beyond the electroweak SM it is useful to regard the SM itself
as an effective low energy theory valid up to some energy scale A at which the new physics
sets in. One is then led to write all possible operators invariant under SU(3)@SU (2)®@U(1)
using the fields of the SM. They can be organized according to their dependence on A. It
is well known that as long as one writes operators not exceeding dimension four there are
crucial conservations which automatically show up: baryon (B) and lepton (L) numbers
and the absence of tree-level flavour changing neutral currents (FCNC). However, as soon
as one proceeds beyond dimension four (i.e., one considers non-renormalizable operators

which are suppressed by powers of A), these conservations are no longer automatically
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guaranteed. Either one has to choose large values for A (for instance, the grand unification
or the Planck scale), or, if A is assumed to be not so far from the Fermi scale, additional
constraints have to be imposed to play on the safe side in relation to B, L and FCNC
violating processes.

Low energy Supersymmetry (SUSY) [97] enters this latter class of models with new
physics close enough to the Fermi scale. The problem of too violent B and L violations is
more elegantly solved by the imposition of an additional discrete symmetry, the R-parity.
We discuss experimental constraints on validity of this assumption based on some of the
measurements presented in this work in Sec. 9.3.

As for the FCNC issue, given that now we are in the presence of new particles, the
scalar partners of the fermions (sfermions) carrying flavour number, new constraints will
have to be imposed to suppress operators of dimension greater than four, leading to
potentially large FCNC rates. They amount to very severe limitations on the pattern of
the sfermion mass matrices: they must be either very close to the unit matrix in flavour
space (flavour universality) or almost proportional to the corresponding fermion mass
matrices (alignment).

The Minimal Supersymmetric Standard Model is the extension of the Standard Model
which only introduces the partners of the standard particles without additional interaction
or field.

9.1.1 Mass Insertion Approximation

A way to parameterize the FCNC and CP quantities in SUSY which is model-independent
is the so-called mass insertion approximation [98]. It concerns the most peculiar source
of FCNC SUSY contributions that do not arise from the mere supersymmetrization of
the FCNC in the SM. They originate from the FC couplings of gluinos and neutralinos
to fermions and sfermions [99]. One chooses a basis for the fermion and sfermion states
where all the couplings of these particles to neutral gauginos are flavour diagonal, while
the FC is exhibited by the non-diagonality of the sfermion propagators. Denoting by
A the off-diagonal terms in the sfermion mass matrices (i.e. the mass terms relating
sfermion of the same electric charge, but different flavour), the sfermion propagators can
be expanded as a series in terms of the dimensionless quantity § = A/m? where m is an
average sfermion mass. As long as A is significantly smaller than m?, we can just take the

first term of this expansion and, then, the experimental information concerning FCNC
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and CP violating phenomena translates into upper bounds on these d’s.

The above mass insertion method presents the major advantage that one does not
need the full diagonalization of the sfermion mass matrices to perform a test of the SUSY
model under consideration in the FCNC sector. It is enough to compute ratios of the off-
diagonal over the diagonal entries of the sfermion mass matrices and compare the results
with the general bounds on the §’s that we provide here from all available experimental
information.

There exist four different A mass insertions connecting flavours ¢ and j along a sfermion
propagator: (Ay);;, (Aij)prs (Aij)z and (Ayj)p,. The indices L and R refer to the
helicity of the fermion partners. The size of these A’s can be quite different. For instance,
in the MSSM case, only the L L mass insertion can change flavour, while all the other three
above mass insertions are flavour conserving, i.e. they have ¢ = j. In this case to realize
a LR or RL flavour change one needs a double mass insertion with the flavour changed
only in a LL mass insertion and a subsequent flavour-conserving L R mass insertion. Even
worse is the case of a FC RR transition: in the MSSM this can be accomplished only
through a laborious set of three mass insertions, two flavour-conserving LR transitions
and an LL FC insertion. Generally the Az quantity does not necessarily coincide with
Apgp. For instance, in the MSSM and in several other cases, one flavour-conserving mass
insertion is proportional to the mass of the corresponding right-handed fermion. Hence ,
(Ai;)Lr and (A;j) g are proportional to the mass of the i-th and j-th fermion, respectively.

The measurements of b — s transitions determine the allowed regions in the SUSY
parameter space providing constraints on the 0’s. The Standard Model and SUSY con-
tributions are evaluated making use of the method of effective Hamiltonian in AB = 1

processes.

9.2 Effective Hamiltonian for AB = 1 Transitions

To evaluate the Effective Hamiltonian for a given process one has to go through the

following steps:

1. calculate the amplitude between quark and gluon states of definite momenta in the

full theory;

2. choose a basis of local operators for the effective theory and calculate their matrix
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elements between the same states used in point 1;

3. determine the coefficients of the operators in the Effective Hamiltonian by matching

the full theory with the effective one.

The matching is given by the following relation:
(fIS)i) = —ch (£1051i) (9.1)
where C; are the Wilson coefficients and O; the operators of the Effective Hamiltonian:
Hess = ) CiO (9.2)
In the case of AB = 1 processes it can be written as:

Hog ' = Vo Zco +C,0 Zc +C,0,|, (9.3)

where

Os = 5,7"Lb,537"Lsg, (9.4)

Oy = 35.7"Lb5s7" Lsa, (9.5)

Os = 5,7"Lby5sy" Lsg, (9.6)

Os = 35u7"Lbs5s7" Rsq, (9.7)
g ng )\04,8

O, = Ll pSa0™’ R—2 bﬁGW (9.8)

where L = 1 — 75 and R = 1 + 75. The terms with tilde are obtained from C;, and
O;4 by exchanging L + R. The Wilson coefficient Cj, includes both SM and SUSY
contributions. In this case, the effect of the operator O, = g5&my5,0"" Rb,F),, and the
electroweak penguin operators, which give very small contributions, has been neglected.

The amplitude in the full theory is given by the calculation in the diagrams in Fig. 9.1,
for example in the QCD factorization approach [96]. The general form of the amplitude
can be written as:

A(pK) = A (0K) + A’ (9K) + A (6K), (9.9)

—SM  —3§ —x* . . o
where A M, A% and AX refer to the SM, gluino, and chargino contributions, respec-

tively. Performing the matching with the effective Hamiltonian one obtains the Wilson
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Figure 9.1: The Standard Model contribution (a) and the gluino—down squark contribu-
tions (b)—(f) to the b — s transitions.

coefficients, which contain the (d;;) 5.
The calculation has been done for the golden mode B® — ¢K° [100, 101]. In the
following, we consider only the gluino exchanges through AB = 1 penguin diagrams

which give the dominant contribution to the amplitude ZSUSY(gbK ).

9.2.1 Supersymmetric Contributions to B° — ¢ K° Decay

From the matching of the full theory with the effective Hamiltonian, at the first order
in the mass insertion approximation, the gluino contributions to the Wilson coefficients
C; 4 at SUSY scale Mg can be evaluated (full expression is given in [102]) in terms of the
parameters (0%;)a5-

The absolute value of the mass insertions (0%) g, is constrained by the experimental

results for:

1. The BR(B — X,7)
2. The CP asymmetry Acp(B — X7)

3. The BR(B — X,(+(7)
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4. The recent measurement of the B, — B, mass difference AM p, = 17.77+0.10 £+
0.07 ps~! [103]

With a Monte Carlo analysis, weighted random configurations of input parameters are
generated (see ref. [105] for details of this procedure) and computing for each configuration
the processes listed above. The constraints induce a clustering on various observables
and parameters, assuming that each unconstrained ¢4, fills uniformly a square (—1...1,
—1...1) in the complex plane. The ranges of CKM parameters have been taken from the
Unitarity Triangle fit [30], and hadronic parameter ranges are as given in refs. [104, 106,
107].

Concerning SUSY parameters, the masses are fixed to m; = mgz = 350 GeV/¢? and
different possibilities for the mass insertions are considered.

In Fig. 9.2 the clustering of events in the Re(6%;)ap—Im(d0%) a5 plane in the single
insertion case is shown [108].

In Figs. 9.3 and 9.4, we study the correlations between Sy and Cyr, Im(89;) ap for
the various SUSY insertions considered in the present analysis.

In the case of LR and RL mass insertions small positive values of Syx, as the ones
obtained in our measurement, can be more easily obtained than the other cases.

The LR mass insertion contributes to bg — sy, much like the SM. The interference
with the Standard Model amplitude produces the “semi-hole” in Fig. 9.2, lower left. On
the contrary, the RL mass insertion contributes to b;, — sy and thus it does not interfere.
Consequently, the B® — ¢K° CP asymmetry is as small as in the Standard Model and
the RL mass insertion is less constrained than the LR one by B — X7, allowing for
small values (and also negative values) of S,k to be produced more easily.

As a conclusion, these results shown for the golden mode B® — ¢K° but represen-
tative in general of b — s decays, say that this sector of the flavour physics still offers
opportunities to disentangle effects genuinely due to New Physics. In the MSSM dis-
crepancy in the observed CP asymmetries in b — s transitions with the one measured in
BY — [cc] KY can be accounted even respecting the existing constraints in B physics, first
of all B(B — X,7v). With an increased statistical significance of the discrepancy between
the b — s and sin 20, these processes would become decisive in discriminating among

different Supersymmetric realizations.
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9.3 Bounds on R-Parity Violation with B — ¢m De-
cays

In principle one can include in the supersymmetric Lagrangian general terms which are
gauge-invariant and renormalizable which violate the total lepton number (L) by one unit
or the barion number (B) by one unit. The existence of such terms is allowed in general
by the Supersymmetric theories, but it is disturbing, since it corresponds to B— and
L—violating processes that have not seen experimentally. The most stringent experimen-
tal constraint comes from the non-observation of proton decay, which would violate both
B and L by one unit. Feynman diagrams like the ones in Fig. 9.5 would lead to p* — e "

(shown) or e K° or p*7° or ut K or vt or vK™ etc. As a rough estimate based on

Figure 9.5: Squarks would mediate 3 ot
disastrously rapid proton decay if R- d Sk

parity were violated by both AB = 1 ot u> Ty o
and AL = 1 interactions. This ex- 12 12

ample shows p — e*7¥ mediated by u u }W

a strange (or bottom) squark.

dimensional analysis, for example, the lifetime would be a tiny fraction of a second if the
couplings were of order unity and the squarks have masses of order 1 TeV. In contrast, the
decay time of the proton into lepton+meson final states is known experimentally to be in
excess of 1032 years. Many other processes also give strong constraints on the violation of
lepton and baryon numbers [109, 110]. Instead of postulating the conservation of B and
L numbers, in Supersymmetry usually a new symmetry is introduced, called R-parity or
equivalently matter parity [111]. Matter parity is a multiplicatively conserved quantum
number defined as

Py = (—1)3B-D (9.10)

for each particle of the theory. The R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity
(Pr = +1), while all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity
(Pr = —1). The conservation of R-parity has the consequence of reduce B and L violation
to tiny amount.

The measured limits on the decay rate of B — ¢m decays (Chapt. 8) can be used to

put constraints on R-parity violating couplings A" and \”.
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In the Standard Model, the effective Hamiltonian for a b — dss transition is:
4G
Hepp = — Fth ZCO (9.11)

where the operators relevant here are given in [86]. The QCD factorization approach
allows to calculate the amplitude for B — ¢m in Eq. 8.1 accounting also for possible
non-factorizable contributions. In this framework, the non-factorizable contributions to

B~ — ¢m~ can be obtained by calculating the diagrams in Fig. 9.6. The computation

Figure 9.6: Non-factorizable diagrams for B~ — ¢7n~.

of the amplitudes, including the non-factorizable terms, can be found in [87]. The ex-
pected branching fractions are B(B* — ¢nt) = 2B(B° — ¢7°) = 2.070% x 107%. The
non-factorizable contributions dominate these decays and there is no isospin symmetry
breaking because annihilation contributions are absent.

The supersymmetric contributions which can violate R-parity are expressed by tri-
linear terms in the superpotential W. The superpotential is the analytic function of the
superfields of the theory', which describe the model [97].

The amount of R-parity violation depends on the magnitude of the trilinear coupling

constants \; i and Z] 1, Where ¢, 7, k are generation indices. Allowing these terms in the

LA superfield is a single object that contains as components all of the bosonic, fermionic and auxiliary
fields within the corresponding super-multiplet.
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effective Hamiltonian the amplitude of B~ — ¢7~ is

_ _ 1 * * _ - 1 Qg CF
AE(B — o) = _ng (N1 Aizg + A2 Aiz2) 1 8/ﬁ0f¢FB (mi)M% {ﬁc + An N, (—Fp —12)
1 * —4 B—m 2 2 2 Qs CF
—W%i)\ég)\gu?? 1% fy P~ (md) M}, 31N, Fy |, (9.12)
where n = Z((T; JZ)) and By = 11 — %nf, fe and fy are the B and ¢ decay constant,

respectively, N. = 3 (SU(3) colors) and FP77(m7) is the B the form factor (F#77(0) =
0.28). Fj is the term describing the long-distance QCD dynamics of the matrix elements
of quarks for the ¢ meson [87].

Assuming that only one sfermion contributes at a time and they have a mass of 100
GeV/c?, the limits on the R-parity violating trilinear coupling constants (in terms of

products of \’s) are shown in Fig. 9.7.
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Figure 9.7: The branching ratio of B~ — ¢n~ as a function of the RPV couplings
| NG MG | (upper curve), [Aigs Aoy | and |Nso N, (lower curve) respectively. The thickness
of curves represent theoretical uncertainties. The horizontal lines are the upper limits and
the SM prediction as labeled respectively. The B~ — ¢n~ upper limit we set on BABAR'’s
210fb~" dataset is smaller than the one displayed: B(B~ — ¢7~) < 2.4 x 1077 (Table

8.16).
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Conclusions

In this work we presented measurements of CP violation and decay rates of B decays
in final states not involving a charm quark in the final state. In particular, the time-
dependent CP asymmetries of decays which proceed through b — s elementary transition
is a particularly sensitive probe of physics beyond the Standard Model. In fact, even if
the precise measurements of CP conserving and CP violating processes show the success
of the CKM picture of the flavour physics, the sector of b — s transitions is still not
strongly constrained and leaves room for new physics contributions.

In particular, we considered the decays which have the cleanest theoretical prediction
within the Standard Model: B — ¢K° and B° — KJKCK? (85" = 0.379). We exam-
ined the former with a completely new approach with respect to the past: the study of
CP violation in the whole K™K~ K° phase space through a time-dependent Dalitz plot
analysis. With this approach, we simultaneously measured the CP-violating asymmetries
of the ¢K°, £5(980)K® resonant and KK~ K° non-resonant contributions, avoiding one
of the largest uncertainties which affected the previous measurements of B® — ¢K°. We
find B.5(B° — ¢K") = 0.06 &+ 0.16 + 0.05, which is lower than the Standard Model
expectation, but it is consistent with it within two standard deviations.

Moreover, only a recently developed experimental technique, which allows the de-
termination of the position of B decay vertex when no charged tracks are originating
from it, has made possible the measurement of the time-dependent CP asymmetry in
BY — KYK2K? decays.

The mixing-induced CP parameter S in the Standard Model should be equal to sin 23
parameter, which is measured with high precision in B — [cc] K° decays by the B-factories.
This statement is true, in the Standard Model, with excellent approximation for the decays
studied in this work. The summary of the measurements in the b — s sector is shown in
Fig. 9.8

A naive average of the b — s penguins, which does not account for the correlations
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sin(2p*") = sin(2¢")
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Figure 9.8: Summary of results, updated at the time of ICHEP 06 conference, of —ncp X
S = sin203.f5 from b — s penguin B decays.

existing among ¢K°, f5(980)K® and K+ K~ K°, and that includes also modes with larger
theoretical uncertainties, shows that —ncp x.S is lower than sin 23. This is not an evidence
of physics beyond the Standard Model, but the systematic deviation from the expected
value is an hint that there is room for it.

More compelling evidence for new physics could be obtained measuring significant
deviation in each decay channel from Standard Model prediction. Currently all the mea-
surement are statistically limited and therefore an increase in accumulated statistics will

shed more light into this quest for New Physics.
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