Galaxy Mergers with Adaptive Mesh Refinement: Star Formation and Hot Gas Outflow

PDF Version Also Available for Download.

Description

In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mpc scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8 x 10{sup 10} M{sub {circle_dot}} each), including star formation and feedback. With galaxies resolved by {approx} 2 x 10{sup 7} total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The ... continued below

Physical Description

4 pages

Creation Information

Kim, Ji-hoon; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Wise, John H.; /NASA, Goddard; Abel, Tom & /KIPAC, Menlo Park /Stanford U., Phys. Dept. June 22, 2011.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mpc scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8 x 10{sup 10} M{sub {circle_dot}} each), including star formation and feedback. With galaxies resolved by {approx} 2 x 10{sup 7} total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.

Physical Description

4 pages

Source

  • Journal Name: Astrophys. J. Lett. 694:L123-L127,2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13552
  • Grant Number: AC02-76SF00515
  • DOI: 10.1088/0004-637X/694/2/L123 | External Link
  • Office of Scientific & Technical Information Report Number: 948485
  • Archival Resource Key: ark:/67531/metadc898444

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 22, 2011

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 28, 2016, 6:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kim, Ji-hoon; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Wise, John H.; /NASA, Goddard; Abel, Tom & /KIPAC, Menlo Park /Stanford U., Phys. Dept. Galaxy Mergers with Adaptive Mesh Refinement: Star Formation and Hot Gas Outflow, article, June 22, 2011; United States. (digital.library.unt.edu/ark:/67531/metadc898444/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.