Optical Faraday Cup for Heavy Ion Beams

PDF Version Also Available for Download.

Description

We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density ... continued below

Physical Description

3

Creation Information

Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K. & Yu, S.S. June 25, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

Physical Description

3

Source

  • 2005 Particle Accelerator Conference, Knoxville, TN

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-56690
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 928008
  • Archival Resource Key: ark:/67531/metadc898434

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 4, 2017, 3:29 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K. & Yu, S.S. Optical Faraday Cup for Heavy Ion Beams, article, June 25, 2007; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc898434/: accessed December 12, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.