Test Report on ISR Double-Loop, Spray-Cooled Inverter

PDF Version Also Available for Download.

Description

The Isothermal Systems Research, Inc. (ISR) double-loop, two-phase spray cooling system was designed to use 85 C transmission oil to cool a heat exchanger via a second cooling loop. The heat exchanger condenses the working fluid vapor back to liquid inside a sealed enclosure to allow for continuous spray cooling of electronics. In the ORNL tests, 85 C water/ethylene/glycol (WEG), which has better thermal properties than transmission oil, was substituted for the transmission oil. Because the ISR spray-cooling system requires a second cooling loop, the final inverter might be inherently larger than inverters that do not require a second-loop cooling ... continued below

Creation Information

Hsu, John S; Coomer, Chester; Campbell, Steven L; Wiles, Randy H; Lowe, Kirk T & McFee, Marshall T February 1, 2007.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Isothermal Systems Research, Inc. (ISR) double-loop, two-phase spray cooling system was designed to use 85 C transmission oil to cool a heat exchanger via a second cooling loop. The heat exchanger condenses the working fluid vapor back to liquid inside a sealed enclosure to allow for continuous spray cooling of electronics. In the ORNL tests, 85 C water/ethylene/glycol (WEG), which has better thermal properties than transmission oil, was substituted for the transmission oil. Because the ISR spray-cooling system requires a second cooling loop, the final inverter might be inherently larger than inverters that do not require a second-loop cooling system. The ISR test setup did not include a dc bus capacitor. Because the insulated gate bipolar transistor (IGBT) conduction test indicated that the ISR test setup could not be properly loaded thermally, no switching tests were conducted. Therefore it was not necessary to attach external capacitors outside the test setup. During load situations not exceeding 400A, the WEG inlet temperature was higher than the WEG outlet temperature. This meant that the 85 C WEG heat exchanger was not cooling the inverter and became a thermal load to the inverter. Only when the load was higher than 400A with a higher coolant temperature and the release valve actuated did the WEG heat exchanger start to cool the 2-phase coolant. The inverter relied strongly on the cooling of the huge aluminum enclosure located inside the ventilation chamber. In a hybrid vehicle, the inverter is situated under the hood, where the dependency on cooling provided by the enclosure may become a problem. The IGBT power dissipation with both sides being spray cooled was around 34 W/cm{sup 2} at 403A, with 995W total IGBT loss at 113.5 C projected junction temperature before the release valve was actuated. The current loading could rise higher than 403 A before reaching the 125 C junction temperature limit if the pressure buildup inside the enclosure could be prevented by improving the secondary cooling loop. This 34 w/cm{sup 2} was an average across all dies. There is no doubt that the cooling capability of the ISR spray-cooling test setup can be improved by (1) lowering the WEG inlet temperature from 85 C to say 70 C, this would condense the vapor better and lower the container pressure, (2) modification of the vapor condenser inside the container to cool both the vapor and the liquid of the 2-phase coolant, in the present setup only the vapor is cooled by the condenser inside the container, and (3) lower the liquid temperature through (1) and (2) to avoid the vaporization that causes cavitations in the pump for ensuring the pump's life expectance.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2006/622
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/931316 | External Link
  • Office of Scientific & Technical Information Report Number: 931316
  • Archival Resource Key: ark:/67531/metadc898433

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 4:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hsu, John S; Coomer, Chester; Campbell, Steven L; Wiles, Randy H; Lowe, Kirk T & McFee, Marshall T. Test Report on ISR Double-Loop, Spray-Cooled Inverter, report, February 1, 2007; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc898433/: accessed October 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.