Stability and support issues in the construction of large span caverns for physics

PDF Version Also Available for Download.

Description

New physics experiments, proposed to study neutrinos and protons, call for the use of large underground particle detectors. In the United States, such detectors would be housed in the US Deep Underground Science and Engineering Laboratory (DUSEL), sited within the footprint of the defunct Homestake Mine, South Dakota. Although the experimental proposals differ in detail, all rely heavily upon the ability of the mined and reinforced rock mass to serve as a stable host for the detector facilities. Experimental proposals, based on the use of Water Cherenkov detector technology, specify rock caverns with excavated volumes in excess of half a ... continued below

Physical Description

9 pages

Creation Information

Laughton, C. May 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

New physics experiments, proposed to study neutrinos and protons, call for the use of large underground particle detectors. In the United States, such detectors would be housed in the US Deep Underground Science and Engineering Laboratory (DUSEL), sited within the footprint of the defunct Homestake Mine, South Dakota. Although the experimental proposals differ in detail, all rely heavily upon the ability of the mined and reinforced rock mass to serve as a stable host for the detector facilities. Experimental proposals, based on the use of Water Cherenkov detector technology, specify rock caverns with excavated volumes in excess of half a million cubic meters, spans of at least 50 m, sited at depths of approximately one to 1.5 kilometers. Although perhaps sited at shallower depth, proposals based on the use of Liquid Argon (LAr) detector technology are no less challenging. LAr proposals not only call for the excavation of large span caverns, but have an additional need for the safe management of large quantities (kilo-tonnes) of cryogenic liquid, including critical provisions for the fail-safe egress of underground personnel and the reliable exhaust of Argon gas in the event of a catastrophic release. These multi-year, high value physics experiments will provide the key experimental data needed to support the research of a new generation of physicists as they probe the behavior of basic particles and the fundamental laws of nature. The rock engineer must deliver caverns that will reliably meet operational requirements and remain stable for periods conservatively estimated to be in excess of twenty years. This paper provides an overview of the DUSEL site conditions and discusses key end-user requirements and design criteria likely to dominate in determining the viability of experimental options. The paper stresses the paramount importance of collecting adequate site-specific data to inform early siting, dimensioning and layout decisions. Given the large-scale of the excavation and likely timeline to construction, the paper also strongly suggests that there are exciting opportunities for the rock mechanics and engineering community to identify and efficiently integrate research components into the design and construction process.

Physical Description

9 pages

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-08-110-E
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 948145
  • Archival Resource Key: ark:/67531/metadc898382

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 26, 2017, 12:50 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Laughton, C. Stability and support issues in the construction of large span caverns for physics, article, May 1, 2008; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc898382/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.