Characterization of Min-K TE-1400 Thermal Insulation

PDF Version Also Available for Download.

Description

Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. Initial compression testing was performed at room temperature at various loading rates ranging between 5 and 500 psi/hour (≈35 and 3500 kPa/hour) to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K. To determine the loading rates that would be used for stress relaxation testing, compression tests were next carried out at various levels followed by stress relaxation under constant strain at temperatures of 650, 850, and 900oC. Additional high temperature compression testing ... continued below

Creation Information

Hemrick, James Gordon; Lara-Curzio, Edgar & King, James July 1, 2008.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. Initial compression testing was performed at room temperature at various loading rates ranging between 5 and 500 psi/hour (≈35 and 3500 kPa/hour) to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K. To determine the loading rates that would be used for stress relaxation testing, compression tests were next carried out at various levels followed by stress relaxation under constant strain at temperatures of 650, 850, and 900oC. Additional high temperature compression testing was performed with samples loaded at a rate of 53 psi/hour (365 kPa/hour) in three load steps of 50, 100 and 200 psi (345, 690, and 1380 kPa) with quick unload/load cycles between steps and followed by a hold period in load control (3 to 100 hours) to allow for sample creep. Testing was carried out at 190, 382, 813, and 850oC. Isothermal stress relaxation testing was performed at temperatures of 190, 382, 813, and 850oC and initial loads of 100 and 200 psi (690 and 1380 kPa). Gradient stress relaxation testing was intended to be performed at temperatures of 850/450oC and 450/190oC with initial loads of 100 or 200 psi (690 and 1380 kPa) performed under constant strain utilizing a twelve-step loading scheme with loading every half hour at a rate of 5.56% strain/hour.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-2008/089
  • Grant Number: DE-AC05-00OR22725
  • DOI: 10.2172/935368 | External Link
  • Office of Scientific & Technical Information Report Number: 935368
  • Archival Resource Key: ark:/67531/metadc898376

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Sept. 22, 2017, 2:15 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hemrick, James Gordon; Lara-Curzio, Edgar & King, James. Characterization of Min-K TE-1400 Thermal Insulation, report, July 1, 2008; [Tennessee]. (digital.library.unt.edu/ark:/67531/metadc898376/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.