Dielectric Wakefield Accelerator Experiments at the SABER Facility

PDF Version Also Available for Download.

Description

Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica ... continued below

Creation Information

Kanareykin, A.; Thompson, M. C.; Berry, M. K.; Blumenfeld, I.; Decker, F. J.; Hogan, M. J. et al. January 28, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC Final Focus Test Beam (FFTB), are foreseen to be produced at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of multi-GV/m in plasmas. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 um and 200 um ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in fused silica (with full data analysis still ongoing) [1]. With the construction and commissioning of the SABER facility at SLAC, new experiments would be made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. This collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

Source

  • Journal Name: Conf.Proc.C070625:3058,2007; Conference: Particle Accelerator Conference PAC07 25-29 Jun 2007, Albuquerque, New Mexico

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13099
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 922958
  • Archival Resource Key: ark:/67531/metadc898345

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 28, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Aug. 1, 2017, 1:32 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Kanareykin, A.; Thompson, M. C.; Berry, M. K.; Blumenfeld, I.; Decker, F. J.; Hogan, M. J. et al. Dielectric Wakefield Accelerator Experiments at the SABER Facility, article, January 28, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc898345/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.