Electron-Cloud Build-Up Simulations for the FNAL Main Injector

PDF Version Also Available for Download.

Description

We present a summary on ongoing simulation results for the electron-cloud (EC) buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade effort [1]. Most of the results presented here are for the field-free region at the location of the retarding field analyzer (RFA) electron detector [2-4]. The primary input variable we exercise is the peak secondary electron yield (SEY) {delta}{sub max}, which we let vary in the range 1.2 {le} {delta}{sub max} {le} 1.7. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding RFA measurements we infer that ... continued below

Creation Information

Furman, Miguel .A. August 25, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a summary on ongoing simulation results for the electron-cloud (EC) buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade effort [1]. Most of the results presented here are for the field-free region at the location of the retarding field analyzer (RFA) electron detector [2-4]. The primary input variable we exercise is the peak secondary electron yield (SEY) {delta}{sub max}, which we let vary in the range 1.2 {le} {delta}{sub max} {le} 1.7. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding RFA measurements we infer that 1.25 {approx}< {delta}{sub max} {approx}< 1.35 at this location. From this piece of information we estimate features of the EC distribution for various fill patterns, including the average electron number density n{sub e}. We then compare the behavior of the EC for a hypothetical RF frequency f{sub RF} = 212 MHz with the current 53 MHz for a given total beam population N{sub tot}. The density n{sub e} goes through a clear threshold as a function of N{sub tot} in a field-free region. As expected, the higher frequency leads to a weaker EC effect: the threshold in N{sub tot} is a factor {approx} 2 higher for f{sub RF} = 212 MHz than for 53 MHz, and ne is correspondingly lower by a factor {approx} 2 when N{sub tot} is above threshold. We briefly describe further work that needs to be carried out, sensitivities in the calculation, and puzzles in the results that remain to be addressed.

Subjects

Keywords

STI Subject Categories

Source

  • 42nd ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron Beam, Nashville, TN, Aug 25-29, 2008

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1402E
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/935752 | External Link
  • Office of Scientific & Technical Information Report Number: 948463
  • Archival Resource Key: ark:/67531/metadc898258

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 25, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 28, 2016, 7:10 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Furman, Miguel .A. Electron-Cloud Build-Up Simulations for the FNAL Main Injector, article, August 25, 2008; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc898258/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.