PLASMA LENS FOR US BASED SUPER NEUTRINO BEAM AT EITHER FNAL OR BNL.

PDF Version Also Available for Download.

Description

The plasma lens concept is examined as an alternative to focusing horns and solenoids for a neutrino beam facility. The concept is based on a combined high-current lens/target configuration. Current is fed at an electrode located downstream from the beginning of the target where pion capturing is needed. The current is carried by plasma outside the target. A second plasma lens section, with an additional current feed, follows the target. The plasma is immersed in a relatively small solenoidal magnetic field to facilitate its current profile shaping to optimize pion capture. Simulations of the not yet fully optimized configuration yielded ... continued below

Creation Information

HERSHCOVITCH,A.; WENG, W.; DIWAN, M.; GALLARDO, J.; KIRK, H.; JOHNSON, B. et al. June 25, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The plasma lens concept is examined as an alternative to focusing horns and solenoids for a neutrino beam facility. The concept is based on a combined high-current lens/target configuration. Current is fed at an electrode located downstream from the beginning of the target where pion capturing is needed. The current is carried by plasma outside the target. A second plasma lens section, with an additional current feed, follows the target. The plasma is immersed in a relatively small solenoidal magnetic field to facilitate its current profile shaping to optimize pion capture. Simulations of the not yet fully optimized configuration yielded a 25% higher neutrino flux at a detector situated at 3 km from the target than the horn system for the entire energy spectrum and a factor of 2.47 higher flux for neutrinos with energy larger than 3 GeV. A major advantage of plasma lenses is in background reduction. In anti-neutrino operation, neutrino background is reduced by a factor of close to 3 for the whole spectrum, and for and for energy larger than 3 GeV, neutrino background is reduced by a factor of 3.6. Plasma lenses have additional advantages: larger axial currents, high signal purity: minimal neutrino background in anti-neutrino runs. The lens medium consists of plasma, consequently, particle absorption and scattering is negligible. Withstanding high mechanical and thermal stresses in a plasma is not an issue.

Source

  • 22ND PARTICLE ACCELERATOR CONFERENCE (PAC 07); ALBUQUERQUE, NEW MEXICO; 20070625 through 20070629

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--79427-2007-CP
  • Grant Number: DE-AC02-98CH10886
  • Office of Scientific & Technical Information Report Number: 921916
  • Archival Resource Key: ark:/67531/metadc898251

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 25, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 1, 2016, 5 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

HERSHCOVITCH,A.; WENG, W.; DIWAN, M.; GALLARDO, J.; KIRK, H.; JOHNSON, B. et al. PLASMA LENS FOR US BASED SUPER NEUTRINO BEAM AT EITHER FNAL OR BNL., article, June 25, 2007; United States. (digital.library.unt.edu/ark:/67531/metadc898251/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.