High Quality Electron Bunches up to 1 GeV from Laser WakefieldAcceleration at LBNL

PDF Version Also Available for Download.

Description

Experiments at the LOASIS laboratory of LBNL havedemonstrated production of 100 MeV to 1 GeV electron bunches with lowenergy spread and low divergence from laser wakefield acceleration. Theradiation pressure of a 10 TW laser pulse, guided over 10 diffractionranges by a few-mm long plasma density channel, was used to drive anintense plasma wave (wakefield), producing electron bunches with energieson the order of 100 MeV and acceleration gradients on the order of 100GV/m. Beam energy was increased from 100 MeV to 1 GeV by using a few-cmlong guiding channel at lower density, driven by a 40 TW laser,demonstrating the anticipated scaling ... continued below

Creation Information

Esarey, E.; Nagler, B.; Gonsalves, A.J.; Toth, Cs.; Nakamura, K.; Geddes, C.G.R. et al. July 1, 2006.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Experiments at the LOASIS laboratory of LBNL havedemonstrated production of 100 MeV to 1 GeV electron bunches with lowenergy spread and low divergence from laser wakefield acceleration. Theradiation pressure of a 10 TW laser pulse, guided over 10 diffractionranges by a few-mm long plasma density channel, was used to drive anintense plasma wave (wakefield), producing electron bunches with energieson the order of 100 MeV and acceleration gradients on the order of 100GV/m. Beam energy was increased from 100 MeV to 1 GeV by using a few-cmlong guiding channel at lower density, driven by a 40 TW laser,demonstrating the anticipated scaling to higher beam energies. Particlesimulations indicate that the low energy spread beams were produced fromself-trapped electrons through the interplay of trapping, loading, anddephasing. Other experiments and simulations are also underway to controlinjection of particles into the wake, and hence improve beam quality andstability further.

Source

  • 12th Advanced Accelerator Concepts Workshop, LakeGeneva, Wisconsin, July 10 - 15, 2006

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--63724
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 929683
  • Archival Resource Key: ark:/67531/metadc898223

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 2006

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Oct. 31, 2016, 4:11 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Esarey, E.; Nagler, B.; Gonsalves, A.J.; Toth, Cs.; Nakamura, K.; Geddes, C.G.R. et al. High Quality Electron Bunches up to 1 GeV from Laser WakefieldAcceleration at LBNL, article, July 1, 2006; (digital.library.unt.edu/ark:/67531/metadc898223/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.