DCPT: A dual-continua random walk particle tracker fortransport

PDF Version Also Available for Download.

Description

Accurate and efficient simulation of chemical transport processes in the unsaturated zone of Yucca Mountain is important to evaluate the performance of the potential repository. The scale of the unsaturated zone model domain for Yucca Mountain (50 km{sup 2} area with a 600 meter depth to the water table) requires a large gridblock approach to efficiently analyze complex flow & transport processes. The conventional schemes based on finite element or finite difference methods perform well for dispersion-dominated transport, but are subject to considerable numerical dilution/dispersion for advection-dominated transport, especially when a large gridblock size is used. Numerical dispersion is an ... continued below

Creation Information

Pan, L.; Liu, H.H.; Cushey, M. & Bodvarsson, G.S. April 11, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Accurate and efficient simulation of chemical transport processes in the unsaturated zone of Yucca Mountain is important to evaluate the performance of the potential repository. The scale of the unsaturated zone model domain for Yucca Mountain (50 km{sup 2} area with a 600 meter depth to the water table) requires a large gridblock approach to efficiently analyze complex flow & transport processes. The conventional schemes based on finite element or finite difference methods perform well for dispersion-dominated transport, but are subject to considerable numerical dilution/dispersion for advection-dominated transport, especially when a large gridblock size is used. Numerical dispersion is an artificial, grid-dependent chemical spreading, especially for otherwise steep concentration fronts. One effective scheme to deal with numerical dispersion is the random walk particle method (RWPM). While significant progress has been made in developing RWPM algorithms and codes for single continuum systems, a random walk particle tracker, which can handle chemical transport in dual-continua (fractured porous media) associated with irregular grid systems, is still absent (to our knowledge) in the public domain. This is largely due to the lacking of rigorous schemes to deal with particle transfer between the continua, and efficient schemes to track particles in irregular grid systems. The main objectives of this study are (1) to develop approaches to extend RWPM from a single continuum to a dual-continua system; (2) to develop an efficient algorithm for tracking particles in 3D irregular grids; and (3) to integrate these approaches into an efficient and user-friendly software, DCPT, for simulating chemical transport in fractured porous media.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--46395
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/926691 | External Link
  • Office of Scientific & Technical Information Report Number: 926691
  • Archival Resource Key: ark:/67531/metadc898192

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 11, 2000

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 7, 2016, 10:25 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pan, L.; Liu, H.H.; Cushey, M. & Bodvarsson, G.S. DCPT: A dual-continua random walk particle tracker fortransport, report, April 11, 2000; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc898192/: accessed December 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.