¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-JRNL-227039

Enabling Strain Hardening
Simulations with Dislocation
Dynamics

Athanasios Arsenlis, Wei Cai, Meijie Tang, Moono
Rhee, Tomas Oppelstrup, Gregg Hommes, Tim Pierce,
Vasily Bulatov

January 3, 2007

Modelling and Simulation in Materials Science and
Engineering

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Enabling Strain Hardening Simulations with Dislocation
Dynamics

A. Arsenlis'* W. Cai%, M. Tang', M. Rhee!,
T. Oppelstrup!, G. Hommes!, T. G. Pierce!, and V. V. Bulatov'

'Lawrence Livermore National Laboratory, University of California
Livermore, CA 94551
2Department of Mechanical Engineering, Stanford University
Stanford, CA 94305-4040

December 28, 2006

Abstract

Numerical algorithms for discrete dislocation dynamics simulations are investigated
for the purpose of enabling strain hardening simulations of single crystals on massively
parallel computers. The algorithms investigated include the /() calculation of forces,
the equations of motion, time integration, adaptive mesh refinement, the treatment of
dislocation core reactions, and the dynamic distribution of work on parallel computers.
A simulation integrating all of these algorithmic elements using the Parallel Dislocation
Simulator (ParaDiS) code is performed to understand their behavior in concert, and
evaluate the overall numerical performance of dislocation dynamics simulations and
their ability to accumulate percents of plastic strain.

1 Introduction

Dislocation dynamics (DD) simulations methods have the potential of directly connecting
the physics of dislocations with evolution of strength and strain hardening in crystalline
materials. These methods simulate explicitly the motion, multiplication, and interaction of
discrete dislocation lines, the carriers of plasticity in crystalline materials, in response to
an applied load. While the fundamentals of DD method have been established for a few
decades, the challenge in connecting the aggregate behavior of dislocations to macroscopic
material response, such as strain hardening, has been and remains one of computability. For

*Corresponding author. Fax: (925) 423-0785; Email: arsenlis@lInl.gov

a reasonable choice of simulation volume and initial dislocation density, most existing DD
simulations are limited to plastic strains of < 0.5% [Zbib et al., 2000, Devincre et al., 2001,
Madec et al., 2002], because the computational expense, along total number of dislocation
segments in the simulation, increases dramatically at yield. Therefore, the information that
DD simulations have been able to provide on the nature of strain hardening has been limited.
In this article, we focus on the development of DD algorithms in the pursuit of extending
both the spatial and temporal scales of these simulations.

Several distinct DD simulation methods have been presented over the past several decades
[Kubin et al., 1992, Devincre, 1996, Rhee et al., 1998, Zbib et al., 1998, Schwarz, 1999, Schwarz, 2003,
Ghoniem and Sun, 1999, Ghoniem et al., 2000, Shenoy et al., 2000, Weygand et al., 2002].
While distinctions can be made between each method, there are basic features that all of
the codes have in common. All of the codes discretize the general curvilinear dislocation
topology into a finite set of degrees of freedom. The calculation of forces on these degrees
of freedom consists of an N-body problem where the bodies in this case are dislocation line
segments. As in other N-body problems, every segment interacts, in principle, with every
other segment in the system, and approximations are introduced for interactions between
distant segments to reduce the order of the calculation from O (N?) to O (N). The position
of the degrees of freedom are updated through predefined equations of motion and a time
integration algorithm. Since the dislocation lines tend to multiply dramatically (more than
two orders of magnitude) during these simulations, all of the methods include procedures for
adaptively refining the discretization. The most complex features of dislocation dynamics
codes involve the treatment of dislocation core reactions. Core reactions include full anni-
hilation reactions, partial annihilation reactions leading to junctions, cross slip events, and
other such events that occur when discrete defects collide. The different simulations methods
cited above differ most in their treatment of core reactions.

While the accuracy of various DD algorithms has been well studied, there is little pub-
lished information on the computational performance of DD codes, except for the level of
plastic strain they are able to attain. The dislocation dynamics class of simulation codes
presents unique computational challenges. The number of active degrees of freedom increases
dramatically during the course of the simulation, and the position of any one degree of free-
dom may cross the simulation volume multiple times when periodic boundary conditions are
imposed. The interaction between the degrees of freedom is long range (1/r), and there are
potentially sharp gradients in the short range. The spatial distribution of the degrees of
freedom can be extremely heterogeneous due to the tendency of dislocation to cluster and
form patterns. Finally, dislocation core reactions introduce discontinuous topological events
that must be detected and handled efficiently.

There are three computational strategies that must be investigated to increase the com-
putability of dislocation dynamics and enable simulations of strain hardening. The first
strategy is to minimize the computational expense of a simulation time step iteration. This
can be achieved by describing the curvilinear dislocation network with the fewest degrees of
freedom and efficiently calculating the forces on those degrees of freedom with a desired level
of accuracy. The second strategy is to maximize the size of the simulation time step. The

time step size is most sensitive to the algorithmic details of the simulation code: equations
of motion, time integration scheme, adaptive mesh refinement, and the treatment of core
reactions. The third strategy is to use parallel computing and to achieve strong-scalability.
A parallel code can achieve good scaling characteristics by evenly distributing the computa-
tion load across all of the available processors while simultaneously minimizing the amount
of communication that is done between them.

Occasionally, the three strategies outlined above may be in conflict with each other. For
example, a method that extends the size of a time step may increase the computational
cost of each time step, or an algorithm that leads to higher efficiency on a single processor
may deteriorate the strong-scaling properties. In such cases, the ultimate decision as to
which strategy to follow is determined by the overall goal of reaching large strains with large
simulation boxes in the least amount of wall clock time.

In the following sections, we focus on the DD algorithm developments at Lawrence Liv-
ermore National Laboratory associated with the Parallel Dislocation Simulator (ParaDiS)
project. The goal of the ParaDis code project is to develop a simulation tool capable of
performing large scale DD simulations of strain hardening. The sections are organized in a
linear fashion with respect to the three computational strategies outlined above. Sections 2
and 3 begins with the dislocation line discretization and calculation of forces, followed by
a discussion on equations of motion and time integration procedures. The discussion then
transitions to handling of discrete topological events associated with adaptive remeshing and
dislocation core reactions in Sections 4 & 5. Finally, the implementation of DD on parallel
computing architectures and the integrated performance of the ParaDiS code are discussed
in Sections 6 & 7.

2 Dislocation Line Discretization and Force Calcula-
tion

2.1 Line Discretization

In our quest for reaching large strains, we focus on discrete representations that introduce
the fewest number of active degrees of freedom while adequately capturing the general line
topology. With this in mind, we choose to discretize the system into a series of interconnected
linear segments equivalent to the discretization employed by Rhee et al. (1998), Kukta
(1998), and Weygand et al. (2002) as shown in Figure 1. Each linear dislocation segment is
terminated by either a discretization node or a physical node. A discretization node connects
two segments, while a physical node may connect more than two segments. Singly connected
nodes are forbidden from the interior of a crystal and may only be employed as boundary
nodes lying on surfaces. Furthermore, to avoid redundancy, no two nodes can be directly
connected together by more than one segment, and every segment must have a non-zero
Burgers vector. The active degrees of freedom, on which forces and equations of motion
must be developed, are the positions of all the nodes in the system.

The conservation of Burgers vector must be enforced everywhere on the dislocation net-
work during the entire course of simulation. We use the indexing convection that b,; repre-
sents the Burgers vector of a line segment 1;; = X; — X, which starts at node ¢ positioned
at X; and terminates at node j positioned at X;. Following this convention, every segment
in the simulation must satisfy 0 = b;; + bj;, and every node 7 must satisfy the condition
0=> i b,;. The position x;; of a point on segment 1;; is defined as

x; (1) = N(=)X;+N ()X, (1)
With/\[(l):%+l and —%glg% (2)

such that x;; (—1/2) = X, and x;; (1/2) = X;. Likewise, since our linear segments must
remain linear during their motion, the velocity v;; of a point on segment 1;; takes the form

where V; and V; are the velocities of nodes 7 and j, respectively.

This discretization scheme of the dislocation network leads to a set of lines with posi-
tional continuity but with discontinuous tangents and undefined curvature at each node.
Higher order discretization schemes have been considered by other researchers that satisfy
the tangential and curvature continuity of the dislocation lines [Ghoniem and Sun, 1999,
Schwarz, 1999]. The desire to increase the level of continuity of the discretization stems
partly from the difficulty in applying the classical singular continuum elastic theory of dis-
locations at locations with infinite curvature. However, these locations do appear in nature
at points of dislocation intersection so the inability of the singular theory of dislocations
to describe a configurations with tangential discontinuities cannot be avoided all together.
Rather then raise the level of continuity of the discretization, we employ a recently devel-
oped non-singular continuum elastic theory of dislocations that requires positional continu-
ity only and is capable of describing the forces acting on all points in the discrete network
[Cai et al., 2006].

2.2 Calculation of Nodal Forces

The force F; on a node i is defined as the negative derivative of the stored energy £ in
the system with respect to the nodal position such that
_0&({X, by, T*})

where the stored energy £ is a function of the positions of all nodes in the system, the
connections between them as defined by the Burgers vectors, and the externally applied
surface traction T*®. It is convenient to partition the total stored energy of the system into
two parts: one associated with the local atomic configuration of the dislocation cores £¢,
and another associated with the long-range elastic distortion £ that can be well described
by continuum elasticity theory, such that & = £°¢ + £¢. Likewise, the force on a node i may

4

be similarly partitioned such that F$ and F¢ derive from the spatial derivatives of the core
and elastic energies, respectively, and F; = F$ + F¢.

The core energy £¢ is the portion of the stored energy associated with dislocations in
nature that cannot be accounted for in the linear elastic strain energy model that forms
the basis of DD simulations. Typically, this portion of the energy can be attributed to
the atoms in the region near the dislocation cores where the lattice deformation diverges
significantly from that predicted by the linear elastic theory [Henager and Hoagland, 2005].
This energy contribution should be short ranged and can be well approximated by an energy
per unit length € as a function of the dislocation’s Burgers vector b and line direction
t. This treatment of the core energy introduces an additional self-energy term for each
segment but ignores any changes to the segment-segment interaction energy that may occur
in the short range when dislocation cores overlap. As will be shown in Section 5, the core
energy contributions to self-energy plays an important role in the formation and breaking of
dislocation junctions.

The total core energy of the discretized dislocation network can be expressed by the
following sum

n—1 n
£°=Y > € (by ty) L] ®)

i=1 j=i+1

where t;; = 1;;/||L;;|| is the unit vector along segment 1;;. The sum is arranged so that
the contribution of every segment in the network is counted once. The function € (b;;, t;;)
describes the core energy variation with dislocation Burgers vector and line orientation and
must be obtained by atomistic simulation. The corresponding dislocation core force F§ on
node ¢ is

. o&° .
k. = - 0X; - ; K "
c c Oe® bz iy tl j
£, = € (bij, tiy)ty; + (Lo — ty; @ ty5) - % ®)
ij

where I is the second order identity tensor. The force ff; can be considered as the part of
the core force on node 7 attributable to its connection to node j. The first term in Eq. (7)
is a line tension that acts to shrink the segment length, while the second term is a moment
that acts to rotate segments to lower core energy orientations. It can be easily shown that
f5, = —fj;, and this equality is used to eliminate redundancy in calculating the core force of
connected nodes.

To obtain an expression for the elastic force at a node, it is more convenient to use a
virtual work argument [Kukta, 1998, Weygand et al., 2002] than to differentiate the elastic
energy £ directly. It is similarly convenient to partition F¢ into contributions that can be

attributed to each of the segments connected to node ¢ as F{ was partitioned in Eq. 6 such
that
el el
J

b}

where ffjl is the contribution to the elastic force on node ¢ due to its connection to node
j. Applying the principle of virtual work to the motion of node i results in the following
integral expression for fg

1/2
B = Ml | NG d (9)
7% (xi;) = [0 (xij) - bij] X ty (10)

where f7* is the Peach-Koehler force at point x;; as defined by the local stress field o and line
direction t;;. If we limit our treatment to linear elastic continua, the dislocation segment’s
own stress field, the stress field of all other dislocation segments in the continuum, and the
stress field from the imposed surface traction T® may be superposed to yield the local stress
o. Likewise, the elastic force fg can also be written as a superposition of three contributions,

B B S Y 6 and (ol £] or [(1)

k=1 l=k+1

where f{;?”t is contribution from the applied surface traction, fj; is the force on node ¢ in
response to the segment ij’s own stress field, and fikjl is the force on node i due to the
interaction between segments 77 and k.

If the applied surface tractions leads to a uniform stress field o“** in the crystal, as is
commonly the case in DD simulations with periodic boundary conditions, then

1
B = H{o by X1 (12)

xt

and fjeft = ffj”. However, if a spatially varying stress field results from the externally applied
tractions, the integral in Eq.(9) must be evaluated with o replaced by . Discussion on
implementation of boundary conditions in finite elastic media may be found in Fivel et al.
(1996), Khraishi and Zbib (2002), and Liu and Schwarz (2005), Tang et al. (2006) .

To evaluate the force on a node due to the stress field of the segments it connects and all
other segments in the system we use the newly developed non-singular expressions for the
stress field of a dislocation segment developed by Cai et al. (2006). In this new theory, the
core singularity in the classical solutions of the Volterra dislocation is removed by introducing
a spherically symmetric Burgers vector distribution at every point on the dislocation line.
The distribution is parameterized by a single variable a, the spread width, and is special
in that it leads to simple analytical expressions for the interaction and self energies as well
as stress fields of linear segments. Furthermore, analytical expressions can also be obtained
for f; and fi’;l in infinite isotropic elastic continua. These expressions are given in Appendix
A. The calculation forces for DD simulations in anisotropic elastic continua is discussed in
detail within Bacon et al. (1979), Rhee et al. (2001), and Han et al. (2003) and is outside
the scope of this work.

There are several advantages for computing the elastic force contributions based on the
non-singular expressions. First, the force expressions are continuous, smooth, and well-
defined everywhere in space; the same is true for their spatial derivatives. The smoothness

of the elastic force field can potentially allow the simulation to take large time steps that
would otherwise be inhibited if the forces were discontinuous. Second, it requires minimal
continuity conditions for the discretized dislocation network, and no further approximation
is required to handle physical nodes where the local curvature may be undefined. Lastly, the
forces on dislocations at point of intersection are still well defined within the non-singular
theory. In this sense, the non-singular expressions provide a complete elastic theory of
dislocations that is attractive for use in numerical simulations.

One evaluation of fi’;l for a given pair of segments, using the expressions in Appendix A, is
approximately 3.5 times more expensive than one evaluation of the stress field of a segment at
a point, using the expressions in Cai et al. (2006). Therefore, under certain conditions it may
be more computationally efficient to numerically integrate f{;l through Gaussian quadrature
than to use the analytical expressions if a tolerable error can be achieved. However, if
fi’;l, ffz-l, f;,g and f,g are all evaluated simultaneously, the evaluation of all four interaction
forces between two segments is approximately 3.9 times more expensive than a single stress
evaluation. The expense of finding all four interaction forces does not increase arithmetically
because symmetries in the vectors and integrals used in a single force evaluation can be
exploited to find the other three with little additional effort. Thus, computing the nodal
force by Gaussian quadrature of stress field is more attractive only when an acceptable
accuracy can be achieved with a single integration point per segment.

The computational expense of numerically integrating the nodal forces between two inter-
acting dislocation segments is examined in Figure 2 as a function of the normalized distance
between the two segments. The computational expense of the calculation is directly propor-
tional to the number of Gauss quadrature points that are needed to reach the desired level of
accuracy with the reference force value obtained from the analytical expressions in Appendix
A. When the separation d between the segments is much larger than the segment length
L, the number of quadrature points necessary to reach a specified accuracy level eventually
drops below 2, at which point it becomes more efficient than the analytic expression. At
these distances, other more efficient lumped source approximations using a fast multipole
method (FMM) will be used to compute the interaction between segments. Therefore, when
dislocation segments are close enough that their interactions need to be accounted for in-
dividually, we find that most efficient way to compute nodal forces is to use the analytic
expressions given in Appendix A.

No matter how efficient the nodal force computation from one pair of segment becomes,
the total amount of calculation scales O (N?) for a system of N segments, if the interac-
tion between every segment pair is accounted for individually. This means that the force
computation will quickly becomes too expensive to be feasible in large scale simulations
[Kukta, 1998, Schwarz, 1999, Weygand et al., 2002]. One approach to reduce the computa-
tional expense is to simply neglect the interactions between segments that are further than a
predefined cut-off distance [Kubin et al., 1992, Devincre, 1996, Devincre and Kubin, 1997].
Since the stress field of a dislocation in an infinite elastic medium is long-ranged and de-
cays slowly (1/r), introduction of a cut-off distance can lead to numerical artifacts in the
force field. In other physical systems that contain long range forces, such as Coulomb in-

teractions in ionic crystals or gravitational fields in galaxies, the Fast Multipole Method
(FMM) [Greengard and Rokhlin, 1997] is typically used to incorporate remote interactions
in simulations without the need of a cut-off distance. Lumped source approximations en-
abled by FMM and its variants have been applied in other DD simulation codes to account
for the elastic interaction between segments considered well-separated [Zbib et al., 1998,
LeSar and Rickman, 2002, Wang et al., 2004]. Here we present a hierarchical FMM algo-
rithm that extends the developments of LeSar and Rickman (2002) and Wang et. al (2004).

Our fast multipole method implementation relies on the commonly-used hierarchical grid
structure shown in Figure 3 where the total number of computational subcells at the lowest
level is restricted to 87 in three dimensions, and the number of levels in the hierarchy is
q+ 1. Consider a cell C' in the lowest level of the hierarchy, and the union U of its nearest
neighbors plus itself (27 cells in total). The nodal forces on a segment contained in C' due to
its local interaction with all of the segments contained in U are accounted for explicitly using
analytic expressions in Appendix A. The nodal forces on a segment contained in C' due to
its remote interaction with segments outside U are accounted for by multipole expansions.

The multipole expansion of a cell in the lowest level of the hierarchy is calculated from the
individual dislocation segments contained in that cell. The multipole expansions of cells at
higher levels in the hierarchy are calculated by using an“upward pass” translation algorithm
in which the multipole moments of daughter cells one level lower are translated and combined
to form the multipole moments of parent cells. In our implementation, every parent cell in
the hierarchy has 8 daughter cells.

Once the moments of mutlipole expansion have been established for all of the cells in the
hierarchy, we compute the stress field in the cells at the lowest level of the hierarchy due to
the multipole expansions of cells considered well-separated. The resulting stress field in a
cell is approximated using a Taylor series expansion about the center of the cell. Assuming
linear elasticity, we can superimpose the contribution of multipole moments from cells at
different levels of the hierarchy.

The Taylor series of the stress due to remote interactions for any cell within the hierarchy
is built in two parts. The first requires calculating the stress field in every cell (black squares
in Figure 3) due to the multipole moments in 189 cells that are outside its nearest neighbor
distance but within the nearest neighbor distance of its parent cell (shaded squares in Figure
3). The second part requires performing a “downward pass” algorithm that moves the
center of the Taylor series expansion of the stress field in the parent cell to the center of
its daughter cells and adds it to the contribution of the first part. The first part can be
done simultaneously for all of the cells within the hierarchy. The second part must be
done after the first and recursively through the fast multipole hierarchy starting at the top.
Finally, the force contribution on the end nodes of a segment due to its remote interactions
is calculated by performing Gaussian quadrature on the Taylor series of the stress field in
the cell containing the segment.

To build the multipole moments of a cell from dislocation segments contained in it, and
to obtain the Taylor series expansion of the stress field in one cell due to the multipole
moments in another, we use the expressions developed by Lesar and Rickman (2002) and

Wang et al. (2004). Modifications are made to further increase the computational efficiency.
Since the spatial derivatives of R = /2% 4 y? + 22 are independent of the order in which
they are taken (eg. R ., = R ,.), a factor of almost six can be saved by taking advantage of
these inherent symmetries in the derivatives of R and not recomputing equivalent derivatives.
Likewise, the terms in the multipole expansion that operate on these equivalent derivatives
can be reorganized and regrouped to further reduce the number of operations required to
calculate a Taylor series expansion of the stress field in remote cells. Details of our numerical
implementation of the FMM for DD are contained in Appendix B.

In application, the multipole moments (of the dislocation density) and Taylor series
expansions (of the stress field) must be truncated at a certain order. In our implementation,
the order of the multipole moments and Taylor series expansions are independent of the level
of the hierarchy on which the expansions reside but are dependent on one another. Their
interdependence stems from the competition between accuracy and computational expense.
If the multipole moments are truncated at a low order, pushing the Taylor series expansions
to high orders will significantly increase computational cost without improving the accuracy.
Conversely, the computational cost of keeping high orders of multipole moments is wasted if
the Taylor series expansions are truncated at lower orders. As shown in Figure 4, the optimal
ratio between the order of multipole moments and Taylor series expansions is approximately
two, and Figure 5 shows the relative expense of calculating the stress field in a computational
subcell at the lowest level of the hierarchy for a given truncation limit in the multipole
moments keeping the optimal ratio found in Figure 4.

Incorporation of this fast multipole method algorithm leads to O (N) scaling of the re-
mote segment interaction forces where NN is the total number of segments in the simulation.
However, since the interaction between dislocation segments in the same subcell or in neigh-
boring subcells is calculated using the analytical expressions that scale O (n?) locally, where
n is the number of segments in a cell, achieving O (N) scaling for the total force calculation
is not trivial. It requires a judicious choice in the number of FMM cells, n., because certain
parts of the FMM algorithm that scale O (n.) may come to dominate the calculation if the
ratio of n./N becomes too large. As illustrated in Figure 6, there always exists an optimal
choice for n,. for a given range of N. Consequently, during a strain hardening simulation, the
number of fast multipole subcells must increase as the total number of degrees of freedom
increases.

In strain hardening simulations, a computationally feasible simulation volume is much
smaller than the volume of macroscopic specimens used in typical tensile straining experi-
ments. To overcome this limitation, periodic boundary conditions (PBC) can be applied to
reduce the influence of unwanted boundaries in a finite simulation box. The interaction of
the dislocation segments in the simulation box with all of their periodic images is handled
within the FMM algorithm by calculating the Taylor series expansion of the stress field at
the top most level of the hierarchy due to all of the images outside the nearest neighbor
distance. The images that are within the nearest neighbor distance of the parent cell are
incorporated by operations at lower levels in the hierarchy. The conditional convergence
problem[Cai et al., 2003] associated with long range interactions can be avoided at the top

most level of the hierarchy by numerically solving an infinite series expressions with appro-
priate corrections|Challacombe et al., 1997].

3 Equations of Motion and Time Integration

3.1 Equations of Motion

With the nodal forces determined, the nodal equations of motion are completed by spec-
ifying the response of the nodes to these forces through mobility functions. It is in these
mobility functions that the material specificity of a DD model becomes most apparent. The
material specific parameters that were required for the force calculation were a limited set of
well-defined constants including the isotropic elastic constants, Burgers vectors, and dislo-
cation core energies and core radii. In comparison, the nodal mobility functions may require
many more parameters to detail the kinetic response of a dislocation network and can con-
tain complex non-linear expressions with functional dependencies on the geometry of the
dislocation, pressure, temperature, and local forces. For clarity, we will omit the explicit de-
pendence of the mobility function on all factors other than the local forces for the expressions
developed in this section.

Since we are mainly interested in simulating strain hardening to large extents of plastic
strain, we’ll assume that the integration timestep will be sufficiently large so that the inertia
of the dislocation segments can be neglected. Mobility functions in this overdamped regime
typically take the form

vix) = MIf(x) (13)

where v(x) is the velocity of point x on the dislocation line, and f(x) is the force per unit
length at the same point. M is a general mobility function whose arguments include not
only the local force f, but also other variables not included explicitly here.

Unfortunately, Equation 13 is in a form that is not conducive to our discretization scheme
of inter-connected linear segments. If we applied Equation 13 as is to our discrete system, the
velocity field in response to the local force force per unit length would violate the constraint
that our linear segments remain linear during their motion. Therefore, it is more convenient
invert the mobility function and define a local drag force per unit length f%% along the
dislocation line as a function of the velocity at that point, with the form

£ (x) = M [v(x)] = ~B[v (x) (14)

where B is defined as the drag function that depends on the local velocity of the dislocation
line and the other implicit variables. Again, the constraint that the velocity varies linearly
along a segment means that the local equilibrium between the driving force f and the drag
force £%%9 cannot be enforced at every point x on the segment. Instead, equilibrium can be
enforced in the weak sense at every node in the discretized dislocation network, i.e.,

F, = —F/" (15)

10

where

1/2

~F[" = Z 15 _1/2N(—l) Bi; [vi; (D] dl (16)

is the integrated drag force at a node ¢, and B;; is the drag function of the segment connecting
nodes ¢ and j. Enforcing equilibrium in this weak sense leads to a sparse system of equations
that relates the velocity of all nodes, {V;}, to forces on all nodes, {F;}. The bandwidth of
the set of equations is narrow and limited to the order of the connectivity of the nodes in
the system. Using the definition of the nodal drag force above, the power dissipation P%* of
the system takes a simple form

4 n-1 n 1/2 n
P = Z Z {/_ vij (1) - Bij [vij (1)] dl} = Z;Fz V. (17)

i=1 j=i+1 1/2

The power dissipated by the system will play an important part in the treatment of disloca-
tion core reactions discussed in Section 5.

In the special case of linear mobility, i.e. B;; [v;;] = Bi; - v4j, the integral expression can
be evaluated leading to the algebraic form

J

where B;; is drag tensor for segment ij. The summation is over all nodes j that are connected
to node i. An example of such a mobility law is given for BCC crystals in Appendix C.

Instead of solving the global sparse system of equations to find the nodal velocities in
response to nodal forces, approximations can be made to keep the calculation local. Both
spatial and temporal approximations may be considered. If we assume that the dislocation
network is well discretized, we can assume that the velocities of neighboring, inter-connected
nodes are roughly the same, namely V; ~ V; and v;;(I) ~ V,. The approximation leads to
a relationship between the nodal force and velocity of the form

I 6J||Bij -(2V,;+V;) foralli (18)

1
F, ~ 5Z||1ij||zsij[vi]. (19)
J

This approximation greatly simplifies the solution of the nodal mobilities by making the
velocity at a particular node a function of the force and connectivity of the same node.
The approximation most likely breaks down around physical nodes where the mobility of
neighboring nodes is dramatically different. Alternatively, a temporal approximation can
be made, in which the velocity of the nodes connected to node i are assumed to not vary
significantly from one time step to another, namely V; R V;‘At. Here, the superscripts ¢
and t — At are used to denote the value at the present and previous time steps, respectively.
This approximation again leads to a scenario where each nodal velocity can be obtained in-
dependently. While the temporal approximation may not break down around physical nodes

11

like the spatial approximation does, it may fail immediately after discontinuous topological
events (e.g. creation or deletion of nodes) or if the time step At becomes too large. Both
the spatial and temporal approximations should be considered seriously because of their
potential to significantly reduce the computational expense of a simulation time step.

3.2 Numerical Time Integration

With the nodal velocities defined, a suitable algorithm must be chosen to advance the
nodal positions during a time step of the simulation. The simplest algorithm is the explicit
Euler-Forward method where

XAt — XL VEAE . (20)

The algorithm is computationally inexpensive in that it requires a single nodal force and
velocity computation per time step. Unfortunately, the algorithm is subject to the Courant
condition for numerical stability and is limited to relatively small time steps. The size of the
time step is controlled by the ratio between the length of shortest segment and the velocity
of the fastest moving node. Because of a wide distribution of nodal velocities, the time step
allowed by Courant condition is usually too small for strain hardening simulations. A more
sophisticated, e.g. implicit, time integrator can be more attractive if the time step can be
significantly increased.

An alternative to the explicit Euler-Forward method is an implicit trapezoidal method
in which the FEuler-Forward and Euler-Backward methods are mixed to form

1

XA = X4 5

(VIi+ VI At (21)
The implicit Euler-Backward method is unconditionally stable, but solving the system of
equation requires an iterative procedure that may involve multiple nodal force and velocity
calculations. Although implicit update methods are more computationally expensive than
explicit methods for a given time step, implicit methods can potentially enable significantly
larger time steps compared to explicit methods. Implicit methods are favored when the ratio
between allowable time step sizes becomes greater than the ratio between their computational
expense. In our experience with the ParaDiS code project, computational expense of implicit
time integration is justified in most cases because of the gains that are made in time step
size for most simulation conditions. However, care must be taken in crafting an efficient
iterative solution technique.

Using a full Newton-Raphson method to solve Equation 21 is prohibitively expensive be-
cause it requires spatial derivatives of the nodal forces. Calculating these spatial derivatives
is more expensive than the calculating the nodal forces themselves, and the bandwidth of the
matrix that must be inverted is the on the order of number of segments per fast multipole
cell and is too large to be computationally useful. Matrix-free iterative methods, such as
Newton-Krylov [Kelley et al., 2004] methods which require only force calculations, may be
considered as an alternative to the full Newton-Raphson method.

12

If we assume that the derivatives of all the nodal velocities with respect to all the nodal
positions are small compared to 1/At, they can be ignored, and an iterative update technique
can be considered in which successive iterates take the form

1
Xin+1) = Xi(n)— X8 4 3 (VIT2 + Vi (n)) At (22)
Xi(1) = XITA L VIAL, (23)

and the iteration ends when [|X!(n+ 1) — X! (n)|| < 7. Unfortunately, such an iteration
scheme does not have good convergence properties in general, and it requires as many nodal
force evaluations as the number of iterations before the solution converges within an ac-
ceptable accuracy. However, it is still relatively inexpensive for an implicit method. The
iteration generally converges as long as the time step is kept small compared to what a full
Newton-Raphson method would allow.

Whereas the Courant stability condition gives rise to a natural time scale in the explicit
methods, the implicit methods do not have such a simple criterion to set the size of their
time steps. To maximize simulation efficiency, we would like to use the largest time step
that still allows the iteration in Eq. (22) to converge within a specified number of steps, but
that time step size is not known a priori. However we can choose to increase the time step
by a constant factor whenever the iteration converges in the previous step, and to reduce
it by another constant factor whenever the iteration fails to converge in the present step.
Depending on the ratio of those two factors, the simulation will proceed with a distribution
of time steps, and the code will perform sub-optimally, in that the maximum allowable time
step is not always used. This approach can be improved by taking into account the error
accepted in the previous time step, when deciding the step size to use in the present time
step. A possible expression for such time control after a successful iteration is

1

Ttol m
Tt — (1 —d™)max; || X (n+ 1) — X! (n)]|

where d > 1 and m > 1 are constants. The maximum increment of At from one step to
the next is by a factor of d, when the maximum error in the previous step is zero. The
expression can be extended to include a similar dependence on the number of iterations that
were needed relative to the maximum number allowed. A similar expression can also be
used to decrease At by a variable amount if the solution does not converge fast enough, but
we find that a constant decrement is sufficient. Lastly, it is good practice to introduce a
time step upper bound, At,,.,, which defines the time resolution of the DD simulation, and
cannot be surpassed by the automatic time step control algorithm.

Atnew — AtOld d

(24)

4 Topological Operations

4.1 General Topological Operators

During the course of a simulation, it may be necessary to modify the topology of the
discrete description of the dislocation network. Topological changes of the network are oper-

13

ations that add or remove degrees of freedom and change the connectivity of the system. In
strain hardening simulations, the dislocation density, measured in line length per unit vol-
ume, may increase by two or more orders of magnitude. To maintain the same discretization
accuracy at the end of the simulation as in the beginning, the number of discretization nodes
must increase proportionally. Apart from discretization concerns, topological operations are
needed to properly account for dislocation core reactions such as annihilation, junction for-
mation, and cross slip events. Performing topological operations in such instances provides
a more accurate description of the physical processes and potentially allows the use of larger
time steps.

Changing the connectivity of the dislocation network through a topological operation is
a discontinuous event, and it is not differentiable with respect to time. Therefore, during
update of the nodal positions, the degrees of freedom and their connectivity must remain
constant; however between updates, the number of degrees of freedom and their connec-
tivity may change to improve the discrete description of the dislocation network. While
changing the topology is a discontinuous operation, the changes should ideally be conducted
on a fixed geometry. The position of the continuous dislocation network represented by
the discretization should not be perturbed. Satisfying the fixed geometry constraint rigor-
ously is difficult in practice, but any perturbations system should be small compared to the
dislocation segment lengths and error tolerances within the simulation.

Apart from these properties, the implementation of topological operations should also
be simple and robust. Simplicity of the operations enables efficient communication among
processors in a parallel computing environment. Robustness ensures that, at the end of the
operation, the Burgers vector is always conserved, and that any two nodes share at most a
single connection between them. We have developed two such general operations that we
have termed Mergenode and Splitnode that satisfy these conditions for a node-based DD code.
The two operations can be considered opposites of each other, and all complex topological
procedures can be accomplished through different combinations of the two of them.

The Mergenode operation combines two nodes into one, as depicted in Figure 7, thus
reducing the number of degrees of freedom. During this operation, all of the connections of
one node are forwarded to other, and the former node is deleted. All the connections on
the remaining node are checked for 1) self-connections and 2) double connections to another
node. The self-connections, if they exist, are deleted. Double connections are collapsed
into a single connection by a Burgers vector sum. If the Burgers vector sum is zero, both
connections (segments) to the common node are deleted. As a result of this deletion, if any
node loses all of its connections, it is deleted. Finally, the position of the resultant node is
updated, if necessary, to reflect its change in connectivity.

The Splitnode operation creates a new node and moves a set of selected connections from
an existing node to the new node, as depicted in Figure 8. If the sum of all Burgers vectors
transferred to the new node is non-zero, a connection is made between the existing node and
the new node to conserve the Burgers vector at both. The new node is often displaced away
from the existing node immediately after Splitnode.

All topological procedures required for performing adaptive mesh refinement and disloca-

14

tion core reactions can be constructed from combinations of these two elementary operations.
For example, a mesh coarsening operation can be performed by using Mergenode to com-
bine a discretization node with one of its neighboring nodes. A mesh refinement operation
can be performed by using Splitnode on a discretization node to bisect one of its segments.
The reaction between two dislocation segments can be handled by using a combination of
Mergenode and Splitnode operations to create a physical node with four connections, and
subsequent junction zipping or annihilation reactions can be handled by Splitnode. While
all of these complex tasks can be built up from combinations of Mergenode and Splitnode,
we still need to specify the logic as to when and how they should be used to perform these
tasks.

4.2 Adaptive Mesh Refinement

Mesh adaption is a necessary component of DD simulations. This is especially true in a
strain hardening simulation, in which the total length of the dislocation lines can increase
by several orders of magnitude. The goal of mesh adaption is to optimize the numerical
description of the continuous dislocation line geometry, so that a given level of accuracy is
achieved with the fewest number of degrees of freedom. Operationally, the mesh can be
locally refined by applying Splitnode to an existing node, and placing the new node on the
mid point of the segment that is split off. The result is the bisection of that segment. The
mesh can be locally coarsened by applying Mergenode to two existing nodes (one of which
is a discretization node) that share a common segment. It is very likely that the shape of
the dislocation line will be slightly changed after a coarsening procedure. Hence, attention
must be paid to ensure that the resulting shape change is within the error tolerances of the
simulation.

Before a discussion into the logic associated with the addition and removal of discretiza-
tion nodes in mesh adaption procedures can ensue, we must first consider the possibility of
improving the discretization by simply rearranging the positions of existing nodes. In Section
2, the nodal force was defined as the negative derivative of the energy of the discretized sys-
tem with respect to the position of that node. Conceptually, we can partition the total force
on a discretization node F; into a “mechanical” component F7"*" and a “configurational”
component, Ff‘mf . As shown in Figure 9, the direction of the configurational component is
parallel to the line connecting its two neighboring nodes. Incremental motion of the node
along this direction produces no plastic relaxation of the stored elastic energy yet reduces
the total energy of the system by improving the discrete representation the underlying con-
tinuous network. The mechanical component is in the perpendicular direction. Incremental
motion of the node along this direction produces a net plastic relaxation of the stored elastic
energy.

With the concept of partitioning the total node force, the distinction between discretiza-
tion nodes and physical nodes is reinforced. Physical nodes with more than two connections
do not have a configurational component in their nodal force because any motion of the node
would change one of the areas defined by two of its connections, unless two of its connections
overlap - a condition forbidden in our discretization scheme. A configurational force may

15

exist on every discretization node whose connections are not co-linear such that area A;, as
shown in Figure 9 can be defined. A mobility law that enables nodal motion in response to
configurational forces can be found in Appendix C.

An illustrative example of the configurational forces in action is shown in the contour
plot of Figure 10a of the nodal redistribution along a Frank-Read source held at a stressed
equilibrium below its activation threshold. The equilibrium configuration of the continuous
dislocation under this condition takes the form of an ellipse due to the variation in the line
energy with the direction of the dislocation line. Initially, the discretized line is described
by two populations of segments lengths in an suboptimal fashion as shown in Figure 10c;
however, as the simulation proceeds, the nodes redistribute along the line to form a more
homogeneous distribution of segments lengths without changing the overall shape of the
underlying ellipse. The enduring variation in the segment lengths is associated with the
overall elliptical shape of the configuration as shown in Figure 10d. As a result of the
redistribution, the energy of the discrete configuration decreases as shown in Figure 10b and
reaches a minimum when the nodes become optimally distributed.

Even though configurational forces will work to improve the discretization during a simu-
lation, procedures for adaptively refining and coarsening the discretization though the inser-
tion and removal of nodal degrees of freedom will be needed in strain hardening simulations
where the length and connectivity of the dislocation network change dramatically. The ini-
tial placement of new discretization nodes during mesh refinement procedures and old nodes
after mesh coarsening procedures does not have to be optimal because of the subsequent
action of configurational forces, but the logic as to where and when to add or remove nodes
from the system must be developed simultaneously so that they do not conflict.

The simplest mesh adaption scheme is to adopt a minimum and maximum segment
length, L,,;, and L,,.., and to bound every segment connected to a discretization node
to be between those limits. The selection of L,,;, and L,,,, must be constrained by the
inequality 2L, < Lje:. Otherwise, a discretization node inserted to bisect a segment
larger than L,,,, will lead to two segments smaller than L,,;, and meet the criterion for
mesh coarsening. Even with this constraint, conflicts may still occur when the removal of a
segment smaller than L,,;, results in a segment larger than L,,,,. Another limitation of this
simple scheme is that it does not include any consideration of the local curvature of the line.

A careful examination of Figure 10(b) shows that in an optimal distribution, the nodes
are more closely spaced in regions of higher curvature than in regions of lower curvature. The
simple scheme outlined above will tend to enforce a more or less uniform segment length,
regardless of the local curvature, counteracting the influence of configurational forces. As an
improvement, the mesh adaption scheme can take into account the areas of discretization
nodes A; as defined in Figure 9. Along with the segment length bounds, we can define
area bounds, A,,;, and A,,q., corresponding to the minimum and maximum areas for each
discretization node. When the area associated with a discretization node A; < A, the
node ¢ will be removed by a coarsening procedure. When A; > A,,.., the discretization will
be locally refined by bisecting both segments connected to node i. With this area criterion
high curvature regions will be discretized with short segments whereas low curvature areas

16

will predominantly consist of long segments.
Similar to the constraint 2L,,;, < L.z, there are also constraints on A,,;, and A,,q.,

0 < 4Amin < Apmae < §L2 : (25)

4 max

The upper bound on A,,., leads to a condition where the area criterion is no longer used for
mesh refinement and a segment is only bisected when its length exceeds L,,.,. The lower
bound on A,,;, leads to a criterion in which nodes are only removed when they connect co-
linear segments such that their removal does not change the dislocation geometry. This is a
strong criterion that is difficult to satisfy because of inevitable errors in numerical integrators.
Since the position of any node is only accurate to within r,,;, A; can potentially have an
error as large as 27y, Lnqs; therefore, a minimum area criterion that is consistent with the
error tolerances of the simulation is A, = 2701 Lmaz-

The inequality between A,,;, and A, in Equation 25 is needed because each new
node bisects an existing segment so that the new area of node i after mesh refinement
becomes A;/4, which should remain larger than the mesh coarsening criterion. The value of
Apmin proposed above logically leads to another constraint v/3Lmes > 3270. Since the new
nodes inserted through the mesh refinement procedure are placed at the midpoint of existing
segments, their area immediately after the insertion is zero. An additional criterion for mesh
coarsening, dependent on the time rate of change of A;, must be introduced to keep these
newly added nodes from being immediately coarsened. Node ¢ should be removed through
a mesh coarsening procedure only if A; < A,) A; <0.

A combined mesh refinement criterion for performing a segment bisection procedure,
that accounts for both the segment length and the area associated with a discretization
node, becomes

Refine (I;;) = <maX (Ais A7) > A | 115 > Lmax) (18511 > 2Lomin (26)

where A; = 0 for physical nodes, leaving the segment length criterion alone for the bisection
of segments that connect two physical nodes. Likewise, a combined mesh coarsening criterion
for performing a Mergenode operation on node ¢ and a connected neighbor node becomes

Coarsen (i) = [(AZ- < Apin VA < o) |Jmin (1], [0])) < Lm} MIIX; = Xl < Linas(27)

where nodes j and k are connected to node ¢. Segments that connect two physical nodes
can be bisected using the refinement criterion, but they cannot be deleted with a coarsening
criterion because it is only applied to discretization nodes. Therefore, these segments are
guaranteed to be smaller than L,,,, but are not necessarily larger than L,,;,. The lower
bound on these segment lengths is defined by the annihilation distance rg,, that will be
introduced in the next section.

17

5 Dislocation Core Reactions

The topological treatment of dislocation core reactions is an important part of a DD
simulation. Not only is it needed to correctly describe the physics of the dislocation core,
but also it has a strong effect on the size of the simulation time step. In this section, we
discuss the treatment of the most basic dislocation reactions, such as annihilation, junction
zipping and unzipping. The list of dislocation core reactions can also include cross-slip,
dissociation into partial dislocations, and dislocation reactions with other defects (such as
free surfaces and inclusion particles), which are beyond the scope of this paper. In the DD
literature, there is no standard procedure for treating these reactions. Some existing DD
codes [Kubin et al., 1992, Schwarz, 1999, Ghoniem et al., 2000] have topological operations
to account for annihilation but not for junction formation, while other existing DD codes
[Rhee et al., 1998, Weygand et al., 2002] treat intersecting dislocations that either lead to
junction forming reactions or annihilations through the same topological operations. We
will investigate and evaluate these different strategies in terms of their physical accuracy
and their impact on time step size.

Since the dislocation annihilation reaction is a special case of the more general junction
formation reaction, we will simply focus our discussion on the general case of junction for-
mation reactions. Annihilation reactions result from junction reactions that yield a net zero
Burgers vector for the junction dislocation. Since the active degrees of freedom in the Par-
aDiS code are nodes connecting dislocation segments, the topological procedures developed
to treat core reactions will employ combinations of the Mergenode and Splitnode operations
to modify the topology of the dislocation network.

5.1 Collision procedures

A DD algorithm must be able to detect dislocation network configurations that may be
undergoing a core reaction such as the intersection of two unconnected line segments. The
shortest distance, d;,, between two unconnected segments 1;; and 1, is found by minimizing
the expression

Amin (X4, X5 X, Xy) = rol}in |xi (@) = xp (B)|| with i # j #k #1,

—%Saﬁ%,and—%gﬂﬁé, (28)
and the two segments can be considered intersecting if d,,in < T'ann, Where 74, is a predefined
annihilation distance. For consistency with other lengths already introduced in the DD code,
the 74,, should be comparable to a/2 and to 27,,. At a distance of a/2, there is significant
overlap in the cores of the two intersecting dislocations, and at a distance of 27, the
separation between the segments is within the acceptable error of the implicit time integrator
introduced in Section 3.2.

An efficient O(N) algorithm, based on the cell-list construction widely used in atomistic
simulations [Allen and Tildesley, 1989], should be used to detect dislocation segment inter-
sections . In the algorithm, the cell partitions used for the FMM calculations, as shown in

18

Figure 3, can be reused. The minimum distance between unconnected segments must only
be calculated for segments in the same or neighboring cells. The shortest distance between
segment pairs in non-neighboring cells is guaranteed to be larger than r,,,. If the cells used
in FMM calculations are too large, they can be futher subdivided into smaller cells to further
reduce the number of d,,;, computations.

In ParaDiS, a collision procedure is performed on every segment pair that satisfies the
condition d,;, < Taenn using a combination of Splitnode and Mergenode operations. Upon
solving d,,;,, we automatically obtain the points of closest contact on these two segments:
X;j (Qmin) and Xp (Bmin), respectively. New nodes, P and @), are then added on both segments
at these points using the Splitnode operation on one of end nodes of each segment, as shown
in Figure 11(a). An exception is made if the point of closest contact overlaps with an end
node of the segment. In this case, a new node is not added, and node P or () corresponds
that existing node. Nodes P and () are then combined into a single node P’ using the
Mergenode operation, as shown in Figure 11(b), completing the collision procedure.

Care must be taken in specifying final position of the node P’ at the end of the collision
procedure. If intersecting segments l;; and lj; are confined to different glide planes, then
the new node P’ must be placed on the line contained in both glide planes, so that the new
segments will satisfy the original glide constraints. Otherwise, the mobility of new segments
could be adversely affected. An acceptable position X to place the new node P’ can be
obtained by solving a constrained minimization problem that takes into account the mobility
constraints of the intersecting segments. The problem takes the form

min <choll _ XPH2 I choll _ XQH2)
subject to (XC"” — Xp) -np; =0
(X" —Xgq) - ngr =0

where np; are the glide plane normals of all segments connected to node P before the
merge, and ng; are the glide plane normals of all segments connected to node () before the
Mergenode operation.

Dislocation annihilation and junction forming reactions can be captured by a performing
a series of collision procedures on a pair of intersecting dislocation lines. Figure 11 shows
a sequence of collisions leading to the formation of dislocation junction. The first collision
procedure, Figure 11(a-b), involves two unconnected segments and results a physical node
P’ connecting four segments. The second collision procedure, Figure 11(c-d), involves two
segments connected to a common segment through P’ and results in two nodes P’ and 2’ that
become the physical nodes at the ends of a junction dislocation. If segment intersections are
detected and collision procedures are performed only for segments sharing the same Burg-
ers vector, the DD simulation will perform annihilation reactions but not junction forming
reactions.

A series of collision procedures can also capture junction unzipping. In this sequence,
the two physical nodes at the ends of the junction dislocation come within r,,, leading to a
collision procedure and the reformation of a node with four connections, as in Figure 11(b).

19

The second collision procedure is the same as the one depicted in Figure 11(c-d) for the
case when the Burgers vectors of the two intersecting segments sum to zero. An potential
alternative to this sequence of two collision procedures is to replace the second collision
procedure by another topological procedure that may be able to capture the physics of these
processes better.

5.2 Dissociation procedures

For a physical n-node connecting n > 3 segments, it may be advantageous to reduce
its connectivity by performing a dissociation procedure. In the dissociation procedure, the
Splitnode operation is invoked to move at least two connections, but no more n — 2 connec-
tions, from the n-node to a newly created node. Figure 12 depicts an alternative sequence
of topological procedures to treat a dislocation junction forming core reaction. As before
a collision procedure is used to create a physical 4-node P’ at the point of intersection of
two unconnected segments. Node P’ then undergoes a dissociation procedure leading the
formation of a junction dislocation with two physical 3-nodes P’ and @)’ at its ends. A
physical 4-node has three unique topological configurations that are possible end states of
a dissociation procedure. A 5-node has ten possible end states. The dissociation procedure
must decide which, if any, of these possible end states is preferred and must also decide
where to position the resulting nodes after a dissociation procedure is performed.

In ParaDiS, the decision as to whether and how a physical n-node should be split is made
by a maximum power dissipation criterion. If the rate of energy dissipation is greatest with
the n-node left intact, no dissociation procedure is performed. If, however, a dissociated
configuration is found to dissipate the most power, the dissociation procedure is performed
on the n-node to make the local topology conform to that configuration. The contribution
of any one node 7 to the power dissipation is

Phs —F,; -V, . (29)

Assuming that forces and velocities of other nodes in the simulation does not change if node
1 is dissociated in nodes P and (), the change in the rate of energy dissipation due to the
dissociation of the node is

AP, =Fp-Vp+Fqo-Vo—F;-V,. (30)
In ParaDiS, every physical node connecting four or more segments is considered for a po-
tential dissociation reaction, and for every node that satisfies the condition AP% <, >0, a
dissociation procedure is performed. If more than one dissociated configuration of a node
satisfies the condition, the dissociated topology which dissipates the most energy per unit
time is selected.

Initial placement of the two new nodes P and () resulting from the dissociation of node i
requires some care. The simplest solution would be to leave them overlapping at the original
position of the parent node. Unfortunately, they would satisfy the intersection criterion and
be recombined in the next time step. Also, the new nodes P and () may be connected by

20

a new segment to conserve the Burgers vector of the network. Allowing nodes P and @
to share the same position would lead to a segment with zero length and present numerical
difficulties for subsequent nodal force and velocity calculations. Therefore, in ParaDiS, nodes
P and @) are separated by a small distance r4 to complete the dissociation procedure. The
distance rg;s = repn +0, with 6 > 0, is chosen such that segments connected to the two nodes
will not satisfy the intersection criterion. Specifically, we place the faster of the two nodes,
P and @), a distance of r4;s away from the location of the parent node in the direction of its
motion, and leave the other node at the original location, i.e.

(1+¢)Vp
Xp = rgeDXP L X, 31
7 (531
(1-¢)Vq
X = rgs——-—+X; (32)
“ 2(|Vqll
¢ = sign(||Vp] —[|Vall) - (33)

In Equations (31) and (32), the positions of the new nodes are computed based on their
velocity when they are located at the original position of the parent node. However, after
one of the nodes is displaced by 74, their forces and velocities may reverse leading to a
configuration that satisfies the intersection criterion in the next time step. The dissociation
would be undone by a collision procedure and the original node would be reformed. To
prevent this from occurring, a confidence factor is used to augment the dissociation criterion.
The confidence factor, ¢, is computed based on the velocities of both nodes P and @) at their
displaced positions though the expression

. (Ve — Vi) - (Xp —Xg)
[V = Vi [IXp = Xol

(34)

where Vi, and Vi, and the velocities of the new nodes P and @ at Xp and Xq, respectively,
as defined by Equations (31) and (32). The confidence factor lies between positive and
negative one. It returns a positive value if the two nodes continue to move apart, and
returns a negative value if the two nodes move back toward one another. Including this
confidence factor, a more robust node dissociation criterion becomes

Dissociate (i — {P,Q}) = max[c(Fp-Vp+Fg-Vg)—F,-V,|>0. (35)

Dissociation procedures can be used to complete dislocation annihilation, and junction
forming and dissolution reactions. Once an intermediate crossed dislocation state is created
by a collision procedure, the resultant physical node connecting four segments can be treated
using the dissociation procedure to change the topology. An annihilation reaction may result
after the dissociation if all four segments share the same Burgers vector, or a junction forming
may result, if the four segments have two distinct Burgers vectors, and the dissociation
procedure results in a the creation of a new segment with a Burgers vector distinct from the
other two. A junction dissolution reaction may result, if the dissociation of a physical node
connecting four segments with two distinct Burgers vectors does not require the introduction

21

of a new segment. Furthermore, the dissociation procedure is general enough to treat the
dissolution of multi-nodes: physical nodes that connect 4 or more segments with more than
two distinct Burgers vectors [Bulatov et al., 2006].

5.3 Comparison of different topological treatments

Since there are multiple topology handling strategies employed by different DD algorithms
to treat dislocation junction reactions, each option should be investigated for its ability to
capture the the physics of junction formation and dissolution and for its ability to enable large
timesteps to be taken by the time integration scheme. Option I is to perform no topological
operations at all. Option II is to perform perform collision procedures only. Option III is to
perform both collision and dissociation procedures to treat dislocation junction reactions.

Option I is the simplest. When two dislocations come together due to attractive elastic
interactions, the dislocations are left to overlap with each other. Thus the junction disloca-
tion is represented by two overlapping dislocation lines. Similarly, when the applied stress
is large enough to unzip the junction, the two lines move apart, requiring no topological
operations either. Options II & III are increasingly more complex. Both require detecting
the intersections of unconnected dislocation segments, and Option III requires checking the
stability of nodes with four or more connections. Furthermore, the properties of the junction
dislocation formed by Options II & III may have different physical properties (Burgers vec-
tor, core energy, mobility) than the two overlapping parent dislocations that represent the
junction dislocation in Option I. Option III is more computationally intensive than Option
IT which is more computationally intensive than Option I per time step; however, it may be
more attractive if it enables larger timesteps to be taken and if it enables a better description
of junction physics.

The competing benefits of each of the three options can be evaluated by investigating how
each handles the formation and dissolution of a simple binary junction between two < 111 >-
type dislocations in BCC crystals. A series of simulations focused on the behavior of a “short”
junction in which the maximum stress required to break the junction was reached when the
two parent dislocation lines had unzipped the junction and were in a crossed configuration.
A second series focused on a “long” junction in which the maximum stress required to break
the junction was reached while configuration still contained a dislocation junction of finite
length. The configurations were loaded with a constant strain rate in a direction that equally
loaded both parent dislocations, and the maximum stress reached to break the junction was
recorded as a function of mesh refinement.

Since the < 100 >-type junction dislocation formed in the simulations using Options
IT & III has a different Burgers vector than the two < 111 >-type parent dislocations, its
mobility and core energy must be specified separately. To be consistent with the physical
limits of the Option I, the segments with a < 100 >-type Burgers vector are constrained
not to move in directions perpendicular to their line direction, and the core energy of the
< 100 >-type is set to be €00y = 2€011)- This core energy of the < 100 >-type dislocation
is the effective core energy of the junction segments under Option I because these segments
are represented by two overlapping < 111 >-type segments. However, realizing that the

22

dislocation core energy is a material parameter in DD simulations that must ultimately be
constructed from atomistic input, a second set of simulations are conducted for Options II
& TIT with €100y = %eflm. Without atomistic input, the latter ratio of core energies may
be more natural. It assumes that the ratio is proportional to the square of the two Burgers
vectors. With these two different ratios, the influence of the core energy on junction strength
can be evaluated.

Figure 13 shows the critical stress to break the junction as a function of the fineness of
the discretization L/L,q, for Approaches I, II & III. The length L is the initial length of
the two parent dislocations which remains fixed for all of the simulations, and L,,,, is the
maximum segment length allowed by the discretization. As the discretization becomes finer,
the results of all three options converge, but not necessarily to the same value. Option I
appears to converge most rapidly, while Option II appears to be the last to converge. Option
I (no topological operations, blue dashed line) predicts the lowest junction strengths, and
Option II (collision procedures only, green lines) predicts the highest junction strengths. The
response of Option IIT (both collision and dissociation procedures, red lines) is bound by the
response of Options I & II. For the cases when the core energy ratio was set €100y = 2 €111y
Option II yields a nonphysical trend in which the “short” junction requires a larger breaking
stress than the “long” junction. The trend that the “long” junctions require a larger breaking
stress than “short” junctions is followed for all other cases. This nonphysical result yielded
by Option II occurs because the crossed configuration endures until the two segments on a
parent dislocation bow around enough to satisfy the intersection criterion, and a collision
procedure is performed. The procedure results in an annihilation reaction involving the
physical 4-node, and the dislocation lines are unbound from the crossed state. Therefore,
only Options I & IIT should be considered as candidate strategies for treating dislocation
junction reactions.

Figure 13 also shows that the ratio between core energies of the parent dislocations and
the junction dislocation may have a strong influence on the junction strength. Although the
junction strength will also depend on absolute magnitude of the core energies, the strength’s
dependence on this ratio serves as an illuminating exercise. For a relative reduction of 30%
in the core energy of the junction dislocation, the strength of the “long” junction increases
by 57%, and the strength of the “short” junction increases by 118% when applying the
topological treatments of Option III. This suggests that dislocation core energies can have
a significant effect on the strain hardening characteristics in a large scale DD simulation.
Therefore, on a purely physical basis, dislocation core reactions leading to junctions should be
treated using the full topological handling (collision and dissociation) procedures developed
in the previous subsections because it allows the user to specify the physical properties (core
energy and mobility) of junction dislocations.

The different strategies to handle dislocation core reactions will also influence the per-
formance of the time integration algorithm. In choosing between Options I & III, it is also
desirable to select the strategy that enables the largest time steps to be taken. In Section
3, we described a time integration algorithm used in ParaDiS, in which the size of the time
step is automatically adjusted at each cycle to satisfy a given numerical accuracy. Figure

23

14 shows the time step history enabled by this time integration scheme while simulating
the “short” junction from initial creation to final dissolution using Option I, and Option
IIT with the two different core energy ratios. Interestingly, enabling topological operations
in Option III (with €55 = 2¢€{;;;,) reduces the average time step by 1/3 compared with

Option I. Reducing the junction core energy to €00y = %eam increases the average time
step by an order of magnitude. Detecting dislocation intersections and probing potential
modes of dissociation for highly connected nodes does not add an order of magnitude to the
computational expense of the DD algorithm. Option III may offer numerical advantages in

addition to a more accurate description of underlying physics.

6 Parallel Algorithms

The computational expense of three dimensional DD simulations is so great that parallel
computers are required to simulate all but the smallest dislocation networks. For example,
according to Figure 6, a DD simulation with 10° segments would require a parallel computer
with approximately 400 central processor units (CPUs) in order to keep the nodal force
calculation per time step below 10 seconds. In fact, any simulation containing more than
200 segments can benefit from parallel computation.

The difficulty in implementing a DD simulation on parallel computer architectures is
that the nodal degrees of freedom in the network have a tendency to cluster in space. The
clustering leads to a condition where computational expense of calculating forces on different
nodal degrees of freedom can significantly differ due to the neighborhood dependence on the
number of local segment-segment force interactions that must be evaluated. Under such
conditions, a simple partitioning algorithm, that divides the simulation domain into subdo-
mains of equal volume and assigns the calculation of forces for the active degrees of freedom
(DOF) within different subdomains to different CPUs, fails spectacularly. We have found
that the fraction of time spent performing computations, 7, is typically under 10% with this
simple spatial partitioning scheme. Similarly poor results are obtained from a partitioning
algorithm that attempts distributes an equal number of DOF (and the responsibility of cal-
culating their forces) to each CPU. More powerful dynamic load balancing schemes must
considered to fully exploit the processing power of parallel computer architectures.

In developing a good load balancing scheme, we will attempt to optimize n = t./(t. + ty, + tm)
where t., t,,, and t,, is the cumulative time parallel computer spends in performing compu-
tations, in waiting for CPUs to reach synchronization points, and in inter-processor com-
munications (messaging), respectively. Figure 15 illustrates the relationship between these
three times in a simple parallel calculation with a single synchronization point. Optimization
of n is best achieved through minimization of t,, and t,,. The time spent waiting is mini-
mized by evenly partitioning the total computation evenly across all of the available CPUs,
and t,, is minimized by using inter-processor communication patterns that rely on local,
point-to-point, messaging exclusively. Since the nodal force calculation is usually the most
computationally intensive part of each time step, we will focus on algorithms that optimally
distribute this part of the computation, and neglect other parts of a DD cycle, such as the

24

detection of dislocation collisions and core reactions.

The O(n) implementation of the nodal force calculation using FMM creates a spatial
locality in the data required to calculate the nodal forces. Dislocation segments in non-
neighboring FMM subcells do not need to know of each other’s position and connectivity.
Under such circumstances, an advanced domain decomposition partitioning algorithm is
anticipated to perform well. In this more advanced spatial partitioning algorithrm, the
responsibility of maintaining accurate information and calculating the forces for the DOF
within different subdomains of unequal volume is assigned to different CPUs, and the bound-
aries of subdomains are allowed to change in time. The additional computation required to
dynamically adjust the position the subdomain boundaries is small compared to the wall
clock time saved in evenly distributing the computational load, and each processor needs to
communicate with only a few “neighboring” CPUs and not the whole agglomeration.

Currently in the ParaDiS code, the hierarchical sdecomposition scheme shown in Figure
16 is used. The entire simulation volume is first divided into N, slabs along the = direction.
Each slab is then divided into N, columns along the y direction. Each column is then divided
into N, subdomains along the z direction. The total number of subdomains is chosen to be
equal to the number of available CPUs, and the positions of the slab, column, and subdomain
boundaries are periodically adjusted to balance the computation based on the relative wall
clock time each CPU spends computing versus waiting. Since the nodal force calculation
dominates the computational expense of a time step iteration, this part will be aggressively
balanced at the expense of creating load imbalances in other parts of time step iteration.

The data and operation ownership rules are more complicated in DD simulations than
in molecular dynamics simulations because the elements of the DD force calculation consist
of one dimensional objects (segments) that may cross the FMM and subdomain boundaries.
Although the ownership rules are somewhat arbitrary, the specified set of rules must consis-
tently ensure that every element of the computation is uniquely distributed across the CPUs
with common precedents. All dislocation segments must be owned by an FMM subcell for
the purpose of building the multipole moments of FMM hierarchy at its lowest level, and
no two FMM subcells should claim ownership of the same segment. In the ParaDiS code,
a dislocation segment is owned by the FMM subcell with the highest index that contains
one of its end nodes, unless the segment crosses the periodic boundary, in which case the
segment is owned by the subcell with the lowest index that contains one of its end nodes.
Although this specified rule is no means the only manner to set ownership, it does satisfy
the data and operation exclusivity criteria. Similar rules must be established to parse the
simulation data and computational operations onto the CPUs that will perform the force
calculation.

In the ParaDiS code, the CPU owns the nodal degrees of freedom whose positions are
contained within its subdomain. Node ownership entails that the CPU will maintain and
update the force, position, and velocity for its nodes and send that data to other CPUs
required to perform some computations involving its nodes. The segment ownership rules
are a bit more complicated. In the ParaDiS code, a segment is owned by the CPU with
the lowest index whose domain both intersects the FMM subcell that owns that segment

25

and contains one of the segment’s end nodes. Segment ownership entails that the CPU will
maintain and update the segment’s Burgers vector and the ID’s of its end nodes. The CPU is
also responsible for calculating the forces on the segment’s end nodes due to their dislocation
core and elastic self energies and their interaction with the far field stresses (contained in
the Taylor series expansions of their FMM subcells). Lastly, the CPU is responsible for
calculating the contribution of its segments to the multipole moments of the FMM subcells
that own them.

The most intensive part of the force computation that must be evenly distributed across
parallel computers is the calculation of the interaction forces between pairs of segments in
the same or neighboring FMM subcells, and the calculation of and Taylor series expansion
of the stress field in a subcell due to the dislocation segments in non-neighboring subcells.
The analytic expressions in Appendix A are used to compute the interaction forces on all 4
ends nodes of the two segments, simultaneously. In the ParaDiS code, this computation is
owned by the CPU with the lowest index in the FMM cell with the lowest index that owns
one of the interacting segments.

The most time consuming part of the fast multipole algorithm is computing the Taylor
series expansion of the stress field in one FMM cell due to the multipole expansion of another
cell. Since the cost and structure of this calculation is fixed for a given hierarchy of FMM
cells, the computational load can be statically distributed at the beginning of the problem.
The distribution remains unchanged at every DD time step until the FMM hierarchy or
the number of available CPUs changes. Let the total number of FMM cells (of the entire
hierarchy) be N,,, and let the total number of CPUs be P. By assigning the elements of
an ordered list of all multipole cells in the hierarchy to an ordered list of CPUs, a load
distribution is achieved in which each CPU calculates computes the Taylor series expansion
of stress field inside ~ (N,,/P) number of cells. Fast multipole cell ownership also includes
the computations involved in the upward and downward pass translations, but the parallel
distribution of these parts of the computation is less critical because of their relative low
cost.

For consistency, all operations in a DD algorithm should respect the data ownership
specified. This includes not only force calculations, but also integrating nodal equations of
motion, adaptive mesh refinement, and the treatment of core reactions. Only the CPU that
owns a node may update its position or delete it altogether. Only the CPU that owns a
segment may change its Burgers vector, the node IDs of its ends nodes, or delete it altogether.
Therefore, a CPU may perform a topological operation only if it owns all the data that will
be affected by this change. As a result, all of topological operations that would have been
performed in a serial simulation may not be performed in a parallel simulation if doing so
would violate the specified ownership rules.

6.1 Force calculation flow chart

The distributed ownership of data and computational load across different CPUs deter-
mines the pattern and frequency of communications between them. The total amount of
communication per time step should be kept small for an efficient parallel algorithm. The

26

ownership rules outlined above require only local, point-to-point, communications for the
calculation of forces on all the nodes. In this instance, the combined inter-processor commu-
nications and intra-processor operations required to compute nodal forces fit the following
logical pattern:

1.

Each CPU communicates the position and connectivity of the nodes that it owns to
CPUs whose domains intersect same and/or neighboring fast multipole subcells.

. Construct multipole moments: Each CPU calculates the contribution its dislocation

segments to the multipole moments of the FMM subcell to which those segments
belong and communicates those contributions to the appropriate CPU that owns the
FMM subcell. Each CPU that owns a FMM subcell adds all of the contributions

together.

Upward pass: Starting from the bottom of the fast multipole hierarchy, each CPU
collects and sums the contribution to the multipole moments of the FMM subcells it
owns from its eight daughter cells, and then calculates the upward pass translation of
its multipole moments and communicates the result to the CPU that owns the subcell’s
parent, until the top of the hierarchy is reached.

Transverse translation: The multipole moments from 189 cells that are outside the
nearest neighbor distance of the target cell but inside the nearest neighbor distance of
its parent are collected by the CPU that owns the target cell and their contribution to
the Taylor series expansion of the stress field in target is calculated.

PBC correction: The CPU that owns the FMM cell at the highest level of the hierarchy
calculates the Taylor series expansion of the stress state due to the periodic images of
the system and adds that to the externally applied stress.

Downward pass: Starting at the highest level of the FMM hierarchy, each CPU that
owns a subcell sums the contribution from its parent to its Taylor series expansion
of the stress from Step 4 and then calculates the downward pass translation of the
stress for each one of its daughter cells and sends the result to the CPUs that own the
daughter cells until the bottom of the hierarchy is reached.

Each CPU that owns a lowest level subcell in the fast multipole hierarchy communicates
the Taylor series expansions of the stress field to the CPU’s whose domains intersect
the subcell.

O(n) force computation: Each CPU calculates and combines the contribution to the
nodal force from the Taylor series expansion of the stress field and from the elastic and
core self-energy contributions for to the segments that it owns.

O(n?) force computation: Each CPU calculates and combines the contribution to the
nodal forces from local segment-segment interactions for the interaction pairs that it
owns.

27

10. Each CPU communicates the nodal force information for nodes it doesn’t own to the
appropriate CPU’s, and adds the force information for its nodes that it receives from
other CPU’s. Force calculation ends

The most computationally intensive part of the above algorithm is in Steps 4 and 9.
The work load of Step 4 is distributed at the beginning of the simulation, and it remains
unchanged as long as the FMM hierarchy and number of CPUs remain constant. However,
the work load of explicit segment-segment calculations in Step 9 must be distributed dynam-
ically by adjusting the boundaries of the domains. In ParaDiS, this is done by measuring
the time it takes for each CPU (domain) to perform computation in Steps 8 & 9 of every
cycle. The boundary between two domains is then shifted towards the domain that has
a relatively higher computational time. The amount of shifting is computed based on the
estimated computational time per unit volume in each domain. Because of the hierarchical
decomposition scheme, this procedure is applied to adjust the boundary between neighbor-
ing domains in the same column, as well as the boundary between neighboring columns in
the same slab, and the boundary between neighboring slabs. The performance of this load
balancing algorithm will be assessed in Section 7.

7 Evaluation of ParaDiS Code Performance

A DD simulation using the nodal force calculation described in Section 2, the time inte-
gration procedure described in Section 3, the adaptive mesh refinement strategy described
in Section 4, the core reaction procedures described in Section 5, and the dynamic load
balancing algorithm described in Section 6 was performed to evaluate the efficacy of these
algorithms in enabling the direct simulation of strain hardening. Therefore, a thorough
analysis of the numerical performance and not the physical results of the simulation will be
conducted. The material properties and boundary conditions of the simulation are given for
reference and to aid in comparing the performance of ParaDiS to other DD simulation codes.

The material properties were chosen to capture the behavior of bce Molybdenum single
crystals at elevated temperatures. The mobility of the dislocations is described in full detail
in Appendix C, and a list of the material constants is given in Table 1. The simulation cell
was b um on a side with periodic boundary conditions applied. An initial dislocation density
of 1.8 x 10'2m~2 was seeded by randomly placing screw dislocations that pierced the periodic
boundaries the cell, and the deformation was driven by a constant tensile strain rate of 10
s~! applied along the [100] crystallographic axis. All of the other discretization and runtime
parameters used in the simulation that have been described in the previous sections are also
listed in Table 1.

The simulation was performed on 128 nodes of the Thunder computer at Lawrence Liver-
more National Laboratory. A node of the Thunder machine consists of four Intel Itanium II
1.4 GHz CPUs with 8 GB of shared RAM per node. As shown in the stress strain response
of Figure 17, a total tensile strain of approximately 1.7% was achieved in 2 x 10° CPU-days.
During the simulation, there was approximately a 40x increase in the length of dislocation

28

lines within the simulation cell as shown in Figure 18. The growth in the dislocation density
led to a proportional growth in the active DOF from approximately 5 x 103 to 1.9 x 10°.
Therefore, the number of CPUs was increased proportionally as well.

The number of processors was doubled every time the average number DOF per CPU
reached 400, so that the average number of active DOF per CPU always ranged between
200 and 400 during the course of the simulation. The simulation initially started on 16
CPUs and grew until it fully loaded 512 CPUs requiring an increase to 1024 CPUs at which
point the simulation was terminated. The average size of a time step in the simulation was
3.35 x 107% s, and a little over half a million time step iterations were required to reach the
final strain of 1.7%. The simulation required 10 wall clock days to execute, with each time
step iteration taking approximately 1.7 wall clock seconds.

The strong scaling characteristics of the ParaDiS code are shown for two different number
of active degrees of freedom in Figure 19. In this plot, perfect scaling would yield a straight
line from the bottom left corner to the top right corner. While the force calculation continues
to show good strong scaling characteristics for fewer than 200 active DOF per CPU, the force
calculation no longer dominates the time spent in the time step iteration, and the other parts
of the time step iteration that have not been optimally parallelized begin to strongly affect
the scaling of the code.

The reduction in perfect scaling of the force calculation is directly attributable to the
residual load imbalance of the dynamic load balancing algorithm. Figure 20 shows the
fraction of time spent performing computations as a function of the number of CPUs for
two different timesteps in the simulation. The parallel efficiency degrades with increasing
number of processors for both cases and degrades more rapidly for the configuration with
fewer degrees of freedom. However, ParaDiS is still able to achieve parallel efficiencies better
than 85% in the force calculation even when the average number DOF per CPU reaches
40. In the 200-400 range that is maintained during the simulation, the parallel efficiency in
the force calculation is always better than 90%. Figure 20 also shows the position of the
domain boundaries for a slice of the simulation box that are used for the simulation step
with 512 CPUs handling 162 thousand active DOF. We find that this particular domain
decomposition routine behaves well for simulations up to several thousand CPUs but begins
to degrade as the number of CPUs reaches on the order of 10 thousand. Other hierarchical
domain decomposition schemes such as binary space partition algorithms may be considered
in the future to better distribute the calculation across computers with tens of thousands of
CPUs.

Significant gains in the average size of a simulation time step may also be possible by
constructing better implicit algorithms for the the time integration methods. In its current
form, the implicit time integration scheme in the ParaDiS code does not use any information
about the stiffness matrix that may be easily accessible to update the positions of the active
DOF. Such information may be able to significantly increase the average time step size in
these simulations and make it possible to perform strain hardening simulations with DD
at quasi-static strain rates (1072 s7!). As implemented, it is difficult to accumulate any
appreciable deformation at strain rates below 1 s~! in a reasonable amount of wall clock

29

time.

Acknowledgements
This work was performed under the auspices of the U.S. Department of Energy by the

University of California, Lawrence Livermore National Laboratory under Contract No. W-
7405-Eng-48.

30

References

[Allen and Tildesley, 1989] Allen, M. and Tildesley, D. (1989). Computer Simulation of
Liquids. Oxford University Press.

[Bacon et al., 1979] Bacon, D., Barnett, D., and Scattergood, R. (1979). Anisotropic elastic
field of a dislocation segment in 3 dimensions. Philosophical Magazine A, 39:231-235.

[Bulatov et al., 2006] Bulatov, V. V., Hsiung, L. L., Tang, M., Arsenlis, A., Bartelt, M. C.,
Cai, W., Florando, J. N., Hiratani, M., Hommes, T., Pierce, T. G., and Diaz de la Rubia,
T. (2006). Dislocation multi-junctions and strain hardening. Nature, 54:561-587.

[Cai et al., 2006] Cai, W., Arsenlis, A., Weinberger, C., and Bulatov, V. (2006). A non-
singular continuum theory of dislocations. Journal of the Mechanics and Physics of Solids,
54:561-587.

[Cai et al., 2003] Cai, W., Bulatov, V., Chang, J., Li, J., and Yip, S. (2003). Periodic image
effects in dislocation modeling. Philosophical Magazine, 83:539-567.

[Challacombe et al., 1997] Challacombe, M., White, C., and Head-Gordon, M. (1997). Pe-
riodic boundary conditions and the fast multipole method. Journal of Chemical Physics,
107:10131-10140.

[Devincre, 1996] Devincre, B. (1996). Computer Simulation in Materials Science, chapter
Meso-scale simulation of the dislocation dynamics, pages 309-323. Kluwer Academic Press.

[Devincre and Kubin, 1997] Devincre, B. and Kubin, L. (1997). Mesoscopic simulations of
dislocations and plasticity. Materials Science and Engineering A, A234-236:561-587.

[Devincre et al., 2001] Devincre, B., Kubin, L., Lemarchand, C., and Madec, R. (2001).
Mesoscopic simulations of plastic deformation. Materials Science and Engineering A,
A309-310:211-219.

[Fivel et al., 1996] Fivel, M., Gosling, T., and G.R., C. (1996). Implementing image stresses
in a 3d dislocation simulation. Modelling and Simulation in Materials Science and Engi-
neering, 4:581-596.

[Ghoniem and Sun, 1999] Ghoniem, N. and Sun, L. (1999). Fast-sum method for the elastic
field of three-dimensional ensembles. Physical Review B, 60:128-140.

[Ghoniem et al., 2000] Ghoniem, N., Tong, S., and Sun, L. (2000). Parametric dislocation
dynamics: a thermodynamics-based approach to investigation of mesoscopic plastic defor-
mation. Physical Review B, 61:913-927.

[Greengard and Rokhlin, 1997] Greengard, L. and Rokhlin, V. (1997). A new version of
the fast multipole method for the laplace equation in three dimensions. Acta Numerica,
6:229-269.

31

[Han et al., 2003] Han, L., Ghoniem, N., and Z., W. (2003). Parametric dislocation dynamics
of anisotropic crystals. Philosophical Magazine, 83:3705-3721.

[Henager and Hoagland, 2005] Henager, C. and Hoagland, R. (2005). Dislocation and stack-
ing fault core fields in fcc metals. Philosophical Magazine, 85:4477-4508.

[Kelley et al., 2004] Kelley, C. T., Kevrekidis, I. G., and Qiao, L. (2004). Newton-krylov
solvers for time-steppers. http://arziv.org/PS_cache/math/pdf/0404/0404374.pdf.

[Khraishi and Zbib, 2002] Khraishi, T. and Zbib, H. (2002). Free-surface effects in 3d dis-
location dynamics: formulation and modeling. Journal of Engineering Materials and
Technology, 124:342-351.

[Kubin et al., 1992] Kubin, L., Canova, G., Condat, M., B., D., Pontikis, V., and Bréchet,
Y. (1992). Dislocation microstructures and plastic flow: a 3d simulation. Solid State
Phenomena, 23-24:455-472.

[Kukta, 1998] Kukta, R. V. (1998). Observations of the Kinetics of Relazation in Epitax-
ial Films Grown on Conventional and Compliant Substrates: A Continuum Simlation of
Dislocation Glide Near an Interface. PhD thesis, Brown University.

[LeSar and Rickman, 2002] LeSar, R. and Rickman, J. K. (2002). Multipole expansion of
dislocation interactions: application to discrete systems. Physical Review B, 65:144110.

[Liu and Schwarz, 2005] Liu, X. and Schwarz, K. (2005). Modelling of dislocations inter-
secting a free surface. Modelling and Simulation in Materials Science and Engineering,
13:1233-1247.

[Madec et al., 2002] Madec, R., Devincre, B., and Kubin, L. (2002). From dislocation junc-
tions to forest hardening. Physical Review Letters, 89:255508.

[Rhee et al., 2001] Rhee, M., Stolken, J., Bulatov, V., de la Rubia, T., Zbib, H., and Hirth,
J. (2001). Dislocation stress fields for dynamic codes using anisotropic elasticity: method-
ology and analysis. Materials Science and Engineering A, 309:288-293.

[Rhee et al., 1998] Rhee, M., Zbib, H., Hirth, J., Huang, H., and de la Rubia, T. (1998).
Models for long- /short-range interactions and cross slip in 3d dislocation simulation of bec
single crystals. Modelling and Simulation in Materials Science and Engineering, 6:467-492.

[Schwarz, 1999] Schwarz, K. (1999). Simulaiton of dislocations on the mesoscopic scale. i.
methods and examples. Journal of Applied Physics, 85:108-119.

[Schwarz, 2003] Schwarz, K. (2003). Local rules for approximating strong dislocation inter-
actions in discrete dislocation dynamics. Modelling and Simulation in Materials Science
and Engineering, 11:609-625.

32

[Shenoy et al., 2000] Shenoy, V. B., Kukta, R. V., and Phillips, R. (2000). Mesoscopic
analysis of structure and strength of dislocation junctions in fcc metals. Physical Review
Letters, 84:1491-1494.

[Tang et al., 2006] Tang, M., Cai, W., Xu, G., and Bulatov, V. V. (2006). A hybrid method
for computing forces on curved dislocations intersecting free surfaces in three dimensional

dislocation dynamics. Modelling and Simulation in Materials Science and Engineering,
14:1139-1151.

[Wang et al., 2004] Wang, Z., Ghoniem, N., and LeSar, R. (2004). Multipole representation
of the elastic field of dislocation ensembles. Physical Review B, 69:174102.

[Weygand et al., 2002] Weygand, D., Friedman, L., Van der Giessen, E., and Needleman, A.
(2002). Aspects of boundary value problem solutions with three-dimensional dislocation
dynamics. Modelling and Simulation in Materials Science and Engineering, 10:437-468.

[Zbib et al., 2000] Zbib, H., Diaz de la Rubia, T., Rhee, M., and Hirth, J. (2000). 3d
dislocation dynamics; stress-strain behavior and hardening mechanisms in fce and bee
metals. Journal of Nuclear Materials, 276:154—165.

[Zbib et al., 1998] Zbib, H., Rhee, M., and Hirth, J. (1998). On plastic deformation and the
dynamics of 3d dislocations. International Journal of Mechanical Sciences, 40:113-127.

33

A Calculation of Force on the End Node of a Disloca-
tion Segment

The following subsections detail the force on an end node of a dislocation segment due
to the stress field of another dislocation segment. The stress field of a dislocation segment
is derived from the non-singular treatement developed by Cai et al. (2006) for the special
case of isotropic elastic solids. The first subsection gives the force on the end node of a
dislocation segment due to another non-parallel dislocation segment. The second subsection
gives the force on the end node of a dislocation segment due to another parallel segment,
and the third subsection gives the force on the end node of a dislocation segment due to its
own stress field. The double integral equation for the force f}3 at a node located at x4 that
terminates a dislocation segment that begins x3 with Burgers vector b due to the stress field
o'? of a dislocation segment with Burgers vector b’ that begins at x; and terminates X, is

given by
12 r [12 l !
f43 = /(; E g 1-— Z X3 + EX4 . b X t dl (36)
12 H * 2 3a2 / / / /
p * (1 3a? / /
+m/x1 <R_2+R—2) [(RXb)dX]IQ (38)
I 1 / / / /
p 3 N
+m/ 2[R %) dX’R O R] (40)
(41)
where

R=x-x" R,=VR-R+a? (42)
X4 — X3

L

L:||X4—X3|| t =

The variable x spans the segment x3 — x4, and the variable X’ spans the segment x5 — x4.
The integral equations holds for isotropic elastic solids whose elastic properties are described
by their shear modulus g and Poisson ratio v. This non-singular form also incorporates a
third material constant a whose length describes the width of the dislocation core.

34

A.1 Force on the End Node of a Segment due to Another Non-
Parallel Segment

The solution integral equation for the force 12 is described by the following expression:

£ = m £ (xs —x2) — £ (x3 — %) — F (x4 — 31) + (35 — x1) (44)
fR) = d{(1-v)[u(
+ [t x (' x)] (u-b) — [t"- (b" x b)] v} (1103 — ysToos)
(L =) [t~ (B x b)Ju— (1 —v) [t x (t x)] (t' - b)
+[6 % (6 x B)] (6 b) — (u-b') (t x b)} (Laos — ysLr0s)
b’ % b)Ju+ [t x (8 x B)] ('~ b)} Iz — yslors)

b’ x b)ju—(1-v)(t-b)(t b)ut (v b)(txDb) 45
46
47
48
+{E2-v)[t- 49

2(1 v) 50

o1

(
+3d {[u- (b’ x b)] — (t-b’) (t' - b)} u(I105 — y3loos)
+3d {a V' b’) (t x b) —d* (v'-b') (u-b) v} (Ios — y31oos)

(45)
(46)
(47)
(48)
(49)
(50)
(51)
L3 (1 —Y) {[t- (b"xb)Ju—[tx (t xb)](t'-b)} (1205 — ys]r05) (52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)

—3(1, (u b/) (t) (1205 — y3]105) 53
—3d2 {(V b/) (t b) VvV — (u : b/) (u : b) V} (1205 - y3]105) 54

3a (1 V) .

{[t"- (0" x b)Ju—[t x (t' x)] (t'-b)} ([115 — yslo15)
—3d2 {(b/) () vV — (V b/) (ll b) u} ([115 — y3]015) 56
+3d (11 b/> (t b) (1305 — y3[205) + 3d (V b/) (t/ b) u (1125 — y3[025) 57
—3d{(u-b)(u-b)u—(u-b)(t'-b)v— (v -b) (t-b)u} (lor5 — y3l115)58

—3 (u b/) (b) u (1315 — y3]215> — 3 (u . b/> (t/ . b) u (1225 — y3]125> 59
where
= T g _gxt v=uxt Vv =t'xu (60)
[[x2 — x|
—_— . —_— . /
g (x3 —x1) - u v — (x3 —X1)+V (61)
u-u u-u

I;;i, represents the following class of integral equations

i R . v R
”k://(zz)kdydz where y = Y oand z=—Y (62)

u-u u-u

35

With this convention

IOOI

IOO3

IlO3
IOl3
Ill3

1203

IOO5

IIO5
IOl5
Ill5
1205
1025
1215
1125
1225
1305

I315

yJor + 25 —

2
oy (R] .

u-u
B 2 - (1+t-th)R,+R-(t +t)
\/u~ua2+(R-u)2 \/u~ua2+(R-u)2
(6)
(et)
[(i~ o) —]
(oo - 8) — g

u-u

3[u-ua®+ (R- 11)2} oo 5 2

(t - "S55 — Jg)

Ju-u

e (6T)

[t (0T — Toos) — T

B%U (Loos + t - t'J5 — yJgs)

FR— (Inos +t - t'J55 — 2J83)

3u1~ - Loz — yJiz +t - t' (2Jf5 — Li03)]

3u1_ — s = 21+t (Y15 — Tong)]

311% [(In03 — 2t - t'[113) — 2J35 + (6 - /) 4 T3]
311;.11 (2603 + b - t' T35 — y*J55)

3u1~ - (21113 — Loos + (- t') 2035 — v T3]

where Jf’j and J7; represent the following integrals

Jf’-:/ Yy Jf:/ * e
) wYY T (R

36

(80)

JY =In[R, + R-t] Ji =In[R, + Rt (81)

1
‘]%1 = R, stzjlzza:_R_ (82)
1 1
Jy = — JZ = — 83
03 (R,+R-t)R, * (R, +R-t') R, (83)
J 23 = 2ng - (Ri - ?/2) Jg3 (84)

Although the expression for the force f}2 is expensive to compute, all of the integrals and
vectors that make up the solution can be reused to calculate f37. Furthermore, with the
calculation of four more integrals and a few vectors fi) and f3} can also be obtained.

A.2 Force on the End Node of a Segment due to Another Parallel
Segment

The solution above breaks down however if the two lines are parallel t =t’, or u=0. A
special solution fj}* must be obtained for the case of parallel lines.

= g [Fn) F b= 0) (35)

—f (x4 — X1,%X4 — X3) + £ (x3 — Xl,O)] (86)
(R, L) = {[(txb)xt](R-b)+Rxt)[(txb)-bl+[Rxb) -t](bxt) (87)
(88)

/ (R-t—2L-t)R
—(1—1/)[(R><b)><t](t~b)}<ln[Ra+R-t] R0) 88
—v{[(txb)xt](t-b)}[BR-t—2L-t)In[R, + R - t] (89)

R-t)(R-t —2L2- t) R, —2Ra} (90)
R —(R-t)

+{2[(R><b’)~t](R><t)(R~b)—a2(1—u)[(R><b’)xt](b) (91)
) . L-t (R-t—2L-t)R,

+2a” [(R x b') - t] (bXt)}<(RZ—(R-t)2) Ra+ (% (R t>2))(

—{2[RxbP)-t](Rxt)(t-b)—a*(1—v)[(t xb) xt](t-b)} (93)

i+ (R-t) ((R-t) (R-t—2L-t)Ra)

Re (R2—(R-t)*) \ Ra R2— (R -t)’

(94)

Just as the integrals and vectors that composed the solution of f}2 could be reused to compute
the forces on the other end points of the two segments, likewise the vectors and integrals
in this special case can be reused to calculate forces at the other end points of the two
segments for this special case as well. Care must be taken to ensure a smooth transition
from the expression for the force between non-parallel segments to the expression for the
force between parallel segments as two segments get close to parallel so as not to introduce
a discontinuity in the force field.

37

A.3 Force on the End Node of a Segment due to Itself

The self force fj; at the end node positioned at x4 is determined by using the expression
for the force on the end node of a segment due to a parallel segment. However, since in this
case X3 = X1, X4 = X, and b = b/; the expression can be significantly simplified. The result
of all of the simplification is given in a relatively compact form below.

S _ H] o
f43 = m |:f (0, Xy — Xg) —f (Xg — X4, 0) (95)
CF (x4 — X3, %4 — X3) + £ (0, o)] (96)
< o v L,+ L L,—a (La—a)2
£, = —E[tx(txb)](t-b){l_l/(ln[- }—2 7)— LI }(97)

L, = VL?+a?

From the expression, it is clear that the self force £, at the end node positioned at x3 is
related to fj; through the equality f3, = —f;.

B Fast Multipole Algorithms for Far Field Interactions

The mathematical framework of the fast multipole method is based on formulae for
generating and evaluating multpole expansions and a few translation theorems. The formulae
for multipole operations have appeared before in the literature [LeSar and Rickman, 2002,
Wang et al., 2004]. The following sections contain a summary of how the FMM formulae are
implemented in the ParaDiS code to enhance their computability. In general, the Einstein
summation convention will be used for lower indices. Vectors and tensors will be denoted by
bold face, e.g. the stress tensor o, whereas scalars and elements in vectors and tensors will
appear in regular face, as in o;;.

The multipole expansion is based on derivatives of the stress field, and a central com-
ponent its implementation is a good representation of the n’th derivative of the distance
function R (x) = ||x||. The elements of the first derivative of R (x) with respect to x may be
written in the following equivalent forms

X5

Ri=0.R=7

(98)

We use the notation 9] = % to denote the elements of repeated differentiation of a
function. With this notation, an element of the n’th derivative of R (x) is represented by the

left hand side of following expression and calculated using the sum on the right hand side,

[n1/2] [n2/2] [n3/2]
OmOROBER(x) =Y Y > (=1)%(2n -3 -20)NCPCyCY, (99)
=0 B=0 ~=0

38

where n =n; +ny +ns3, (=a+ [+, and

_<)"J"m()L';)L!' (100)
d

|z] is the floor operator which rounds down to the nearest integer < x. nl!l is the double

factorial:
" 1-3:-5---(n—2)-n, nodd
nll =
2-4-6---(n—2)-n, neven

and we define (—1)!! = 1.

Equation 99 is derived from Eq. A4 in Lesar and Rickman (2002), by collecting similar
terms. The full n’th derivative of R is a symmetric n-dimensional tensor where the order in
which the derivatives are taken does not matter (eg. 8}‘?1 a}i - = af;a}i 1). An element in the
n’th derivative of R written as 9920 R occurs

X1 TX2 TX3

(n1 + To + 713)'

Mmnens
ny 'nglngl

times in the n-dimensional tensor but needs to computed only once.

The collection of similar terms and the computation of each unique element in the n’th
derivative of R only once reduce the number of terms that need to be computed and stored
in the multipole expansion of the dislocation density. The computational cost of creating
and evaluating of multipole and Taylor series expansions is reduced by a factor ~6, and the
computational cost of translating the centers of the multipole and Taylor series expansions
as well as the cost of converting multipole expansions to Taylor series expansions is reduced
by a factor of ~36.

B.0.1 The multipole expansion

The stress o at a point x” induced by a dislocation segment, is given by the line integral

/ Mbn ’
fbr,) /
+m / €kmn [Rijm (X' = X) = 055 R ppm (X' = x)] dxy;, (101)

where p is the bulk modulus, v the Poisson ratio, and b the Burgers vector, € is the per-
mutation tensor, and x is a position of a point on the dislocation segment. The integral is
taken along the dislocation segment. The position of a point x on a dislocation line segment
starting at x” and terminating at x' may be described by the expression x;(s) = x¥ + s¢;,
with 0 < s <1, and & = x! — x°.

It may be more efficient to approximate the integral by truncating and infinite series
solution to the integral that converges quickly if the length of the segment is much smaller
than the distance between the segment and the field point at which the stress is evaluated.

39

The infinite series solution requires calculating the multipole moment expansion n?jﬁ 7 of the
dislocation segment about a point x” that is much closer to the dislocation segment than
the point x” where the stress is evaluated. The multipole moment expansion of the segment
is defined by

1
72 () = b / (51— X) (ot —) (g —) ds (102)
0

The integrand is a polynomial of order (= a + (3 + ~ that can be efficiently integrated
with Gaussian quadrature using LCJ’?’J quadrature points. Equation 102 is used to build the
multipole moment expansion in an FMM cell at the lowest level of the hierarchy by summing
up the contributions of the dislocation segments contained within that cell, and using the
multipole moment expansion of the sum to compute the stress in non-neighboring FMM
cells.

The integral expression of the stress may now be rewritten as an infinite sum of the mul-
tipole moments of the dislocation segment. These multipole moments form the coefficients
in a Taylor expansion of the stress which converges rapidly far away from the dislocation
line segment. The infinite series of the stress takes the form

o 2€kmn
Uij (X,) = 8_7T |i€jmnGnimpp + EirrmG’njmpp + : (Gnm]m — 5ijGnkmpp> (103>
where
o ¢ (—a
Cijpim = Y Y > M2 (x") 93, 00,00, R jum (X' = x"), (104)
¢=0 a=0 #=0

with v =(—a — (.

In implementation, one can use the invariance of Gjjxu, W.r.t permutations of k, [, m,
so that Gijuim = Gijkmi = Gijikm = Gijimk = Gijmr = Gijmu. Also, when evaluating a
multipole expansion, only certain elements of Gk, and Gyjry are needed. None of the
elements of Giikim, Gijiii, Gijrij, and Gy are ever used in the stress expression. The above
symmetries and unused elements saves a factor of six in the number of elements of G that
needs to be computed.

B.0.2 Translation operators

The upward pass in the FMM algorithm requires shifting the point x” about which a
multipole moment expansion is defined. We have a set of multipole coefficients n calculated
for the expansion about a point x”, and wish to obtain the coefficients for the expansion
about different point y”. The expansion 7 (y”) may be written as a function of the expansion
1 (x”) through the expression

761 = 335 (D) (0) () vt -0 o - e (a0

a=0 b=0 c=0

40

The n of a parent cell in the FMM hierarchy is formed by combining the translation of the
multipole expansions of the 8 daughter cells from the centers of their cells to the center of
their parent’s cell. The process is performed layer by layer, from the next finest grid to the
top level, so that multipole expansions of all cells in the FMM hierarchy are formed.

A multipole expansion constructed from a set of segments, accurately represents the stress
due from those segments at points far away from the segments used in its construction.
Rather using Equation 103 to compute the stress at points within a remote cell, a local
Taylor series expansion of the stress field is constructed about the center x” of the target
cell. An the local Taylor series expansion is used to calculate the stress at points x’ close to
the center of the cell. The Taylor series expansion of the stress takes the form

cCa

00 ¢
0_” Z g' Z . /// /1 N Xllll)ﬁ (Xll ///) Toaﬁ’y(///)’ (106)

¢=0 a=0 =

[e=]

where

T%B*y (X///)

€jmn nimpp njmpp 1— nkijm nkmpp

| —

2 mn (6% «
GO0 4 GO0y 2K (G b 6, G)] (107)

G > e () O 02 O R, (¢ —). (108)

ME% Fl=

t=0 a b=0

withy=(—a—pf,andc=t—a—b.

In our FMM scheme, there are 189 sets of multipole expansions that are combined to form
the Taylor series expansion of the stress in another cell. The calculation is conducted for every
cell in the FMM hierarchy and is the most computationally intensive element of the FMM
1mplementat10n The translation of n{** (x”) to T (x) is a linear operation on the elements
of ¥ (x"), and the linear operator is a functlon of a set of quantized vectors y = x"”" — x”
between FMM cell centers. By scaling, and using rotation and reflection symmetries of the
linear operator on y, the number of unique linear operators can be reduced from 189 to 13.
The 13 unique linear operators at each level of the hierarchy can be computed once in the
beginning of the simulation and stored in the memory (if available).

Lastly, the downward pass algorithm in the FMM implementation requires shifting the
point about which a Taylor series expansion of the stress is defined from x” to y” . This
shift can be performed in a manner similar to the shift for multipole moments in Equation
105. Assume we have a Taylor expansion T (x”'), transforming that into a an expansion
T (y") is done by:

¢ ¢—a{—a—b
eI <)()(7) 7 =) (v = x5 (v =)T T, (109)

a=a b=p c=v

where(= a+ 3+ 7.
The translation in Equation 109 is used to shift the complete Taylor series expansion
of the stress field in a parent FMM cell to its eight daughter cells. The daughter cells are

41

required to add this contribution from the parent to the contribution from of the cells on its
level of the hierarchy that are outside its nearest neighbor distance but inside the nearest
neighbor distance of its parent cell using Equation 106. The process is recursively repeated
until the lowest level in the FMM hierarchy is reached.

C Description of a Linear BCC Mobility Law

In BCC metals, screw dislocations do not dissociate into partial dislocations the same
way they do in FCC metals. Therefore, for simulations of BCC crystals, it may be better
not to assign glide plane normals n to screw segments. Instead, screw dislocations should
be given the same mobility in all directions perpendicular to the line, i.e.

B(t) = B, —t ®t), whent| b, (110)

where B, is a drag coefficient for motion of screw dislocations. This isotropic mobility for
screws mimics the so-called “pencil-glide” behavior of dislocations observed in BCC metals
at elevated temperatures.

At the same time, the drag coefficient tensor for the non-screw segments should remain
anisotropic with respect to glide and climb. Let us define the drag coefficient tensor for a
pure edge dislocation as

B(t) = B.ym®m) + B..,(n®n), whentlb (111)

where B., and B, are the drag coefficients for motion in glide and climb directions, respec-
tively, and the unit vectors are defined asn =b x t/||b x t|| and m = n x t. To completely
specify the drag coefficient tensor for all segment orientations, we need a function that
smoothly interpolates between the two limits: pure screw and pure edge orientations. A
possible form for such an interpolation function is

B(t) = Bm®m)+ B.(n®n), whentxb#0 (112)
1 _ _ ~-1/2
B, = ol [B.2Ib x t]|* + B;* (b t)°]
1
Be = ol [B2]|b x %+ B2 (b-t)2]

In the limit t x b — 0, the above function becomes the same as Eq. (110).

As currently defined, B is singular and cannot be inverted. In most cases, this does
not cause problems because it is only part of the nodal drag equation, and when combined
with the contributions of other segments to the total nodal drag, the total drag on a node
becomes non-singular. This is always the case for physical nodes in the system, because
no three segments connected to the same node can all be parallel. However, as the two
line segments connected to a discretization node become colinear, the nodal drag tensor
becomes increasingly less well-conditioned. The problem lies in the fact that there is no

42

drag explicitly specified for the configuration forces on a discretization node. This can be
remedied by adding a contribution to B that will set the mobility of a node in response to
purely configurational forces. One option may take the form

B(t) = Bm®m)+ B.(n®n)+ Bi(t®t) (113)

where B; is the drag associated with a point on the line in response to the configurational
force on it, and in general B; should be much less B, B.., and B; so that it does not affect
the mechanical behavior of the system. There is an additional danger in not adding this type
of non-physical drag contribution. If the nodes in the system are initially placed far from
their ideal position, the velocity of the nodes will be very large in the directions that do not
generate any mechanical work. This will significantly reduce the size of the simulation time
step.

43

discretization node

Burgers vector sum rule
* For each node

by, + by + by =0
* For each segment
by, +byy =0

Figure 1: Schematic depicting the method of discretization of dislocation lines into inter-
connected piecewise linear segments terminating at discretization nodes or physical nodes.
Discretization nodes connect two dislocation segments while phyiscal nodes connect and ar-
bitrary number of segments. Burgers vector conservation is enforced at both types of nodes.
The white arrows represent the line directions over which the Burgers vectors are defined,
not the Burgers vectors themselves.

44

Number of Quadrature Points

|
— — Equivalent Cost of Analytical Force Evaluation— — T - — — 1\

1 MR | sll MR | Lol MR |

107 107 1 10°
d/L

Figure 2: Plot of the number of Gauss quadrature points needed to calculate the force at
the end node of a screw dislocation with Burgers vector b = [111] due to a screw dislocation
with Burgers vector b = [111] for a desired level of accuracy € as a function of the distance
between them. The computational cost for evaluating the analytical force expressions given
in Appendix A is shown relative to the computational cost of evaluating the forces through
numerical integration if the forces on all four end nodes are calculated simultaneously.

45

Relative Stress Error

107! 1072 107 107

| 'I

0 5 10 15 20
Taylor Series Expansion Order

ek
S

o0

~

Multipole Expansion Order
N\ N

Figure 4: Contour depicting the relative error in the stress calculated using a fast multipole
method as a function of the truncation in the multipole moment expansion order and Taylor
series expansion order.

47

(o)

—_—
()

—_—
()

(9]

T — T
|

[E—
)
N
T —
|

\S]

Relative computation time
= S

[—
TT T T T TTTT

U

-
T
!

10 | | | |
0 2 4 6 8 10

Multipole expansion order

Figure 5: Computational expense as a function of the truncation multipole moment expan-
sion relative to the expense of a zeroth order truncation. The trunction of Taylor series
expansion is maintained at a constant factor of 2 of the truncation of the multipole moment
expansion.

48

Number of Subcells

3 3 3 3 3

108, : : 24 8 16 32
: 164°
3 1128
10%L

Region of Optimality

Wall Clock Time for Force Calculation (s)
)

10 10* 10° 10°
Number of Dislocation Segments

Figure 6: Plot depicting the optimal number of computational subcells as a function of
the total number of dislocation segments in the system. The plot assumes that the spatial
distribution of segments is homogeneous and that the force calculation will be partitioned
between the local n? and non-local lumped sources as shown in Figure 3.

49

, b= by + by,
by, = byt by, by,,=b,,

Figure 7: The sequence of topological operations that are conducted during a merging of two
nodes 0 and 1 into one node 0. a) Initial topology in the immediate vicinity of nodes 0 and
1. b)Connections between node 0 and node 1 are deleted. ¢) Connections between nodes 1
and 2 and other nodes in common are collapsed into single connections or no connection at
all depending on the sum of Burgers vectors. d) Remaining connections of the node to be
removed, node 1, are transferred to node 0, and the position of node 0 is updated.

50

b)

b5, = by,
bs,= by,
bos= by + by,

Figure 8: The sequence of topological operations that are conducted during a splitting of a
node 0 into two nodes 0 and 5. a) Initial topology in the immediate vicinity of node 0. b)
The connections of node 0 to nodes 1 and 4 are removed and connected to a new node 5 with
no change in Burgers vector. c¢) A connection between node 0 and 5 is made to conserve

Burgers vector at nodes 0 and 5, if necessary.

51

Figure 9: Schematic showing the decomposition of the force on a discretization node into a
force that does mechanical work, F7¢* and a force that is purely configurational, Ff‘mf that
acts to optimize the discretization. Motion in the node in the direction of F"*" changes the
area of the triangle, A;, formed by the node and its neighbors, while motion of the node in
the direction of F¢* does not.

52

a) Fraction of Segments C)

BT 42— Taa
0 01 02 03 04

>

Simulation Time

72\ AN
50r 1251 200m

Segment Length (lattice units)
b) d)
1.000

0.995
N
w

0.990

0.985

, , . >
Simulation Time

Figure 10: (a) Contour plot depicting the redistribution of segment lengths on a curved
dislocation segment under a stressed equilibrium. The segments were initially placed in two
equal populations with lengths of 507 and 2007 measured in lattice units and ended in a
more uniform distribution in response to configurational forces. (b) Change in the energy of
the discrete system (normalized to the initial energy) during the course of the redistribution
of the discreization nodes. (c) Initial node configuration. (d) Final node configuration

53

Figure 11: (a) The minimum distance d,,;, between two unconnected segments 1-2 and 3-4
is reached at points P and (). Two segments are considered to be in contact if d,ni < Tann-
New nodes are introduced at points P and Q. (b) Nodes P and @) are merged into a single
node P’. (c) Segment 2-5 comes into contact with segment P’-4, on which a new node R
is added. (d) Merging nodes 2 and R into a new node 2’ leads to the formation of junction
segment P’-2, if the Burgers vectors of segments P’-2 and P’-R do not cancel each other.
If the Burgers vectors do cancel, segment P’-2’ is deleted leading to dislocation annihilation
reaction.

(b)

Figure 12: (a) and (b) is the same as those in Fig. 11. (c) Dissociation of node P’ into two
nodes, P’ and ', leading to a topology different from that in (a).

o4

x 107

"Short" Junction

G 170/1t
.

A No Topological Operations
[o Collision Procedures Only e
o Collision & Dissociation Procedures

O 1 1 1 1 1
L/Lmaa:

"Long" Junction

s ——
6 i
=. s
S4tceT BT TS T TS °]
O N N S A
©
2+ i
A No Topological Operations — o = 4.c
o Collision Procedures Only . 3 (§<111>
.) . = " €000 = 2€1 1y
o Collision & Dissociation Procedures 2
0 I I I I I
4 8 12 16

L/Lmam

Figure 13: Simulated strength of binary junction as a function of discretization ratio L/ L, az,
topology handling strategies, and core energy. Three topology handing options were ex-
plored: no topological operations, collision procedures only, and both collision and disso-
ciation procedures enabled. Two core energies were explored for the junction dislocation.
The “short” junction geometry consisted of two dislocations of length L = 1000 lattice spac-
ings with by = £ [111], t; = \/% [144] and by = $ [111], ty = \/% [414] intersecting at their
midpoints. The “long” junction geometry consisted of two dislocations with b; = % [111],

t; = \/% [144] and by = 1 [111], t5 = \/% [414] intersecting at their midpoints.

55

10-6 L T T T T T T T T
1077} i
—~ i '
NG ['
S I
5 i
o, 10-8 |l|} I l M I i
O]
>
N
o
£
= 9
107% === No Topological Operations E
= Full Topological Treatment, £, = 28‘§f<111>]
— Full Topological Treatment, &g = %%(111)
10-10 1 1 1 1 1 1

3000 6000 9000
Time Step Number

Figure 14: Time step history for the junction formation and annihilation simulations de-
scribed shown in Figure 13 for a “short” junction with L/L,,,, = 6 under a constant applied
strain rate. The case in which collision procedures are performed only is omitted, and a case
in which full topological procedures are performed is added with the core energy of the (100)
junction dislocation equal to 4/3 the core energy of the two $(111) dislocations.

56

I

Iw
Im

Figure 15: Schematic depicting the performance of a simple parallel program with a single
synchronization point where t. is the time spent computing, ¢,, is the time spent waiting,
and t,, is the time spent communicating.

L —

X

Figure 16: Schematic depicts the dynamic domain decomposition algorithm used to partition
the computation on parallel computer architectures. The volume is recursively sectioned by
first cutting the volume with planes parallel to the x-axis, then with planes parallel to the
y-axis, followed by planes parallel to the z-axis.

57

200 . .» . . : | :

[E—,
()]
S
|
]

[E—
S
-
|
]

D
O
]

Tensile Stress (MPa)

O L]]]] !]]
0 0.5 1.0 1.5 2.0

Tensile Strain (%)

Figure 17: A representative tensile stress strain response for a simulation of a Molybde-
num single crystal with the loading direction along the [100] crystallographic axis using the
analytical forces and mobility law described in the Appendix.

58

Table 1: a)Material parameters used to capture the properties of bcc Molybdenum at elevated
temperatures. b) ParaDiS runtime parameters for the demonstration simulation.

a)

pn = 130 GPa
v = 0.309
HbH<111> = 2.725x 107 m
a = 40[b]
€ = gl [400] (Ib]” — v b - t[)
B> = B> —] Pas!
B> — p<i00> — 1000 Pa-s~!
B> = BS99 = 1000 Pa-s~*
Bftt> = 10> = (.001 Pa-s™!
b)
Tiol = 10||b||<111>
Tann = 2Tl
Tdis = 2Tann
Lin = 50||b||<111>
Linge = 200||b||(111>
Amin = 2T Limaz
Apae = 2Amin +LL2,.
Atpee = 1077s
d = 12
m = 1

59

200

—_—

D

)
1

100 |

Active DoF (Thousands)

- 60

50 |- - 20
0 : | . | : 1 0
0 0.5 1.0 1.5 2.0

Tensile Strain (%)

Dislocation Denisty (um‘z)

Figure 18: Growth of the dislocation density and active degrees of freedom in a strain

hardening simulation as a function of the accumulated deformation.

60

1000

—
S
O

Speedup Factor

p—
=

162K Active DoF

— Force Calculation
--- Full Time Step

10 100
Number of CPUs

1000

Figure 19: Strong scaling characteristics of the ParaDiS code on the LLNL/Thunder machine
for two snapshots of a strain hardening simulation containing 22K and 162K active degrees

of freedom.

61

p—
S

[[
162K Active DoF -

S
Ne
I

22K Active DoF

o
o0
|
|

4
2
|
|

<
o)
I
|

Computational Efficiency Ratio, N

| | | | |
0 100 200 300 400 500 600

of CPUs

o
W

Figure 20: The ratio, n, of CPU time spent performing calculations over the total CPU time
spent in computing nodal forces for two snapshots of a strain hardening simulation containing
22K and 162K active degrees of freedom. Inset: Position of domain boundaries obtained by
the dynamic load balancing algorithm with 512 CPUs for a slice of the simulation cell taken
along the y-axis.

62

