CeBr₃ as a High-Resolution Gamma-Ray Detector

Michael Reed¹, Paul Guss¹, and Christopher Contreras²

¹Remote Sensing Laboratory, 4600 N. Hollywood Blvd., Las Vegas, NV 89191, reedms@nv.doe.gov
²University of Nevada at Las Vegas

INTRODUCTION

Lanthanum halide (LaBr₃:Ce) scintillators have been well-documented as high-resolution gamma-ray detectors that are operated at room temperature [1]. These scintillators have better resolution (<3% at 662 keV) relative to sodium iodide (NaI(Tl)) scintillators (7% at 662 keV), but the naturally-occurring radioactive isotope ¹³⁸La causes self-activity in the crystal that occludes portions of the gamma-ray spectrum [2]. This self-activity limits the use of LaBr₃:Ce in high-sensitivity applications. Cerium, the dopant in the LaBr₃:Ce matrix possesses useful scintillation properties, and its self-activity is on the order of 3750 times less than La [3]; however, Ce has not been fully characterized as the chief component in a scintillation detector. This work investigated Ce as the key scintillation matrix component in a scintillation detector with the hypothesis that CeBr₃ promises energy resolution comparable or superior to LaBr₃:Ce. The researchers involved with this work believe that CeBr₃ may be the answer to obtaining high-temperature, high-resolution spectra with greater sensitivity than LaBr₃:Ce.

DESCRIPTION OF THE ACTUAL WORK

This work benchmarked each of two sizes of CeBr₃ crystals produced by Saint-Gobain against NaI(Tl) and LaBr₃:Ce crystals of comparable sizes. The team has documented the volume effects on self-absorption in CeBr₃ and LaBr₃:Ce crystals as well as characteristics of energy resolution, light output, timing, and counting efficiency using a series of isotopes as test sources. All background and source measurements were taken in a lead-shielded environment to help maintain consistency across measurements and to ensure that background in the spectra was dominated by the self-activity in the two types of detection matrices.

MCNPX was benchmarked on 0.5"x0.5" and 1"x1" CeBr₃ crystals and 1"x1" and 2"x2" LaBr₃:Ce crystals to refine self-activity models for both crystal types. This model was used to predict background spectra for larger CeBr₃ crystals.

RESULTS

Figure 1 shows the 0.5"x0.5" CeBr₃ crystal attached to the photomultiplier tube (PMT) during an intermediate stage of production.

Fig. 1. 0.5"x0.5" CeBr₃ crystal and PMT during manufacturing.

Figures 2 and 3 show background spectra for the 2"x2" LaBr₃:Ce crystal and 0.5"x0.5" CeBr₃ crystal, respectively.

Fig. 2. Background spectrum for 2"x2" LaBr₃:Ce crystal.
The background spectra shown in Figures 2 and 3 illustrate the increased self-activity component of LaBr$_3$:Ce over CeBr$_3$. These spectra in addition to the documented data from this study regarding such characteristics as energy resolution, counting efficiency, and light output for CeBr$_3$ culminate into an excellent case for the production and use of CeBr$_3$ crystals in radiological detection devices where high-sensitivity is paramount.

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA2546 with the U.S. Department of Energy.

REFERENCES