A user's guide to radiation transport in ALEGRA-HEDP : version 4.6.

PDF Version Also Available for Download.

Description

This manual describes the input syntax to the ALEGRA radiation transport package. All input and output variables are defined, as well as all algorithmic controls. This manual describes the radiation input syntax for ALEGRA-HEDP. The ALEGRA manual[2] describes how to run the code and general input syntax. The ALEGRA-HEDP manual[13] describes the input for other physics used in high energy density physics simulations, as well as the opacity models used by this radiation package. An emission model, which is the lowest order radiation transport approximation, is also described in the ALEGRA-HEDP manual. This document is meant to be used with … continued below

Physical Description

38 p.

Creation Information

Mehlhorn, Thomas Alan & Brunner, Thomas A. January 1, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 42 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This manual describes the input syntax to the ALEGRA radiation transport package. All input and output variables are defined, as well as all algorithmic controls. This manual describes the radiation input syntax for ALEGRA-HEDP. The ALEGRA manual[2] describes how to run the code and general input syntax. The ALEGRA-HEDP manual[13] describes the input for other physics used in high energy density physics simulations, as well as the opacity models used by this radiation package. An emission model, which is the lowest order radiation transport approximation, is also described in the ALEGRA-HEDP manual. This document is meant to be used with these other manuals.

Physical Description

38 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 2005

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 8, 2016, 1:25 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 42

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mehlhorn, Thomas Alan & Brunner, Thomas A. A user's guide to radiation transport in ALEGRA-HEDP : version 4.6., report, January 1, 2005; United States. (https://digital.library.unt.edu/ark:/67531/metadc898053/: accessed April 19, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen