Demonstrating the Model Nature of the High-Temperature Superconductor HgBa2CuO4+d

PDF Version Also Available for Download.

Description

The compound HgBa{sub 2}CuO{sub 4+{delta}} (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T{sub c}) among all single Cu-O layer cuprates, with T{sub c} = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped ... continued below

Physical Description

15 pages

Creation Information

Barisic, Neven; Li, Yuan; Zhao, Xudong; Cho, Yong-Chan; Chabot-Couture, Guillaume; Yu, Guichuan et al. September 30, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The compound HgBa{sub 2}CuO{sub 4+{delta}} (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (T{sub c}) among all single Cu-O layer cuprates, with T{sub c} = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (T{sub c} = 47 K, hole concentration p {approx} 0.08) to overdoped (T{sub c} = 64 K, p {approx} 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.

Physical Description

15 pages

Source

  • Journal Name: Physical Review B

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SLAC-PUB-13412
  • Grant Number: AC02-76SF00515
  • Office of Scientific & Technical Information Report Number: 939105
  • Archival Resource Key: ark:/67531/metadc898052

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 30, 2008

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Dec. 5, 2016, 1:31 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Barisic, Neven; Li, Yuan; Zhao, Xudong; Cho, Yong-Chan; Chabot-Couture, Guillaume; Yu, Guichuan et al. Demonstrating the Model Nature of the High-Temperature Superconductor HgBa2CuO4+d, article, September 30, 2008; [Menlo Park, California]. (digital.library.unt.edu/ark:/67531/metadc898052/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.