Fabrication and test of the first normal conducting crossbar H-type accelerating cavity at Fermilab for HINS

PDF Version Also Available for Download.

Description

The proposed High Intensity Neutrino Source (HINS) at Fermilab is based on an 8 GeV linear proton accelerator that consists of a normal-conducting (warm) and a superconducting section. The warm section is composed of an ion source, a radio frequency quadrupole, a medium energy beam transport (MEBT) and 16 warm Crossbar H-type (CH) cavities that accelerate the beam from 2.5 MeV to 10 MeV (from {beta}=0.0744 to {beta}=0.1422). These warm cavities are separated by superconducting solenoids enclosed in individual cryostats. Beyond 10 MeV, the design uses superconducting spoke resonators to accelerate the beam up to 8 GeV. In this paper, ... continued below

Physical Description

3 pages

Creation Information

Ristori, L.; Apollinari, G.; Gonin, I.; Khabiboulline, T.; Romanov, G. & /Fermilab June 1, 2007.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The proposed High Intensity Neutrino Source (HINS) at Fermilab is based on an 8 GeV linear proton accelerator that consists of a normal-conducting (warm) and a superconducting section. The warm section is composed of an ion source, a radio frequency quadrupole, a medium energy beam transport (MEBT) and 16 warm Crossbar H-type (CH) cavities that accelerate the beam from 2.5 MeV to 10 MeV (from {beta}=0.0744 to {beta}=0.1422). These warm cavities are separated by superconducting solenoids enclosed in individual cryostats. Beyond 10 MeV, the design uses superconducting spoke resonators to accelerate the beam up to 8 GeV. In this paper, we illustrate the completion of the first warm CH cavity ({beta}=0.0744) explaining in detail the mechanical engineering aspects related to the machining and brazing processes. The radio-frequency (RF) measurements and tuning performed at Fermilab on the resonator and comparisons with simulations are also discussed.

Physical Description

3 pages

Source

  • Journal Name: Conf.Proc.C070625:2292,2007; Conference: Presented at Particle Accelerator Conference (PAC 07), Albuquerque, New Mexico, 25-29 Jun 2007

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-PUB-07-227-TD
  • Grant Number: AC02-07CH11359
  • Office of Scientific & Technical Information Report Number: 922033
  • Archival Resource Key: ark:/67531/metadc897986

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 2007

Added to The UNT Digital Library

  • Sept. 27, 2016, 1:39 a.m.

Description Last Updated

  • Nov. 28, 2016, 2:37 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ristori, L.; Apollinari, G.; Gonin, I.; Khabiboulline, T.; Romanov, G. & /Fermilab. Fabrication and test of the first normal conducting crossbar H-type accelerating cavity at Fermilab for HINS, article, June 1, 2007; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc897986/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.